test_learning_rate_scheduler.py 19.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import copy
18
import math
19
import numpy as np
20
import unittest
21

22
import paddle.fluid as fluid
23
import paddle.fluid.layers as layers
24
import paddle.fluid.framework as framework
Q
QI JUN 已提交
25
import paddle.fluid.core as core
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
33
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
84

85

S
shippingwang 已提交
86 87 88 89 90 91 92
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
    cur_epoch = math.floor(global_step / step_each_epoch)
    decayed_lr = learning_rate * 0.5 * (
        math.cos(cur_epoch * math.pi / epochs) + 1)
    return decayed_lr


93 94 95 96 97 98 99 100
def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
    a = math.pow(global_step, -0.5)
    b = math.pow(warmup_steps, -1.5) * global_step
    decayed_lr = learning_rate * math.pow(d_model, -0.5) * min(a, b)

    return decayed_lr


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
    linear_step = end_lr - start_lr
    decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
    return decayed_lr


def multi_step_decay(global_step, learning_rate, milestones, decay_rate=0.1):
    for i in range(len(milestones)):
        if global_step < milestones[i]:
            return learning_rate * math.pow(decay_rate, i)

    return learning_rate * math.pow(decay_rate, len(milestones))


def step_decay(global_step, learning_rate, step_size, decay_rate=0.1):
    return learning_rate * math.pow(decay_rate, global_step // step_size)


119 120 121 122
def lambda_decay(global_step, learning_rate, lr_lambda):
    return learning_rate * lr_lambda(global_step)


123 124
class TestLearningRateDecayDygraph(unittest.TestCase):
    def test_NoamDecay(self):
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        with fluid.dygraph.guard():
            d_model = 0.01
            warmup_steps = 200
            learning_rate = 2.0
            lr = fluid.layers.noam_decay(d_model, warmup_steps, learning_rate)
            for step in range(5):
                step += 1
                right_result = noam_decay(step, d_model, warmup_steps,
                                          learning_rate)
                fluid_result = lr()

                self.assertAlmostEqual(
                    right_result,
                    fluid_result[0],
                    msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
                    format(step, right_result, fluid_result[0]))

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def test_LinearLrWarmup(self):
        with fluid.dygraph.guard():
            lr = fluid.layers.polynomial_decay(
                learning_rate=1.0,
                decay_steps=10,
                end_learning_rate=0.0,
                power=1.0)
            lr = fluid.layers.linear_lr_warmup(
                learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)

            right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
            for i in range(5):

                t = lr()

                self.assertTrue(
                    np.allclose((t.numpy())[0].item(), right_result[i]))

            with self.assertRaises(TypeError):
                lr = fluid.layers.linear_lr_warmup(
                    learning_rate="fake_lr",
                    warmup_steps=2,
                    start_lr=0.0,
                    end_lr=1.0)

    def test_MultiStepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            milestones = [2, 4, 8]
            decay_rate = 0.2
            scheduler = fluid.dygraph.MultiStepDecay(learning_rate, milestones,
                                                     decay_rate)
            for epoch in range(10):
                right_result = multi_step_decay(epoch, learning_rate,
                                                milestones, decay_rate)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
                    msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [30, 50, 20],
                                                  0.1)

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
                                                  1)

    def test_StepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            step_size = 3
            decay_rate = 0.2
            scheduler = fluid.dygraph.StepDecay(learning_rate, step_size,
                                                decay_rate)
            for epoch in range(10):
                right_result = step_decay(epoch, learning_rate, step_size,
                                          decay_rate)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
                    msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, "test", 0.1)

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
                                                  1)

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.MultiStepDecay("test", [20, 30, 50])

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(2.0, [20, 30, 50])

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def test_LambdaDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            lr_lambda = lambda x: 0.95**x
            scheduler = fluid.dygraph.LambdaDecay(learning_rate, lr_lambda)

            linear = fluid.dygraph.nn.Linear(10, 10)
            adam = fluid.optimizer.Adam(
                scheduler, parameter_list=linear.parameters())

            for epoch in range(30):
                right_result = lambda_decay(epoch, learning_rate, lr_lambda)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
                    msg='Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
                    format(epoch, right_result, fluid_result))

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.LambdaDecay(learning_rate, "test")

247

248 249
class TestLearningRateDecay(unittest.TestCase):
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Q
QI JUN 已提交
250 251 252 253 254 255 256 257 258
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
                                        kwargs)

    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
259 260
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
Q
QI JUN 已提交
261

262
        with fluid.program_guard(main_prog, startup_prog):
263
            decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
264 265 266 267

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

268
        exe.run(startup_prog)
269

Q
Qiao Longfei 已提交
270
        for step in range(10):
271 272 273
            # Step of NoamDecay starts from 1.
            if python_decay_fn.__name__ == 'noam_decay':
                step += 1
274
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
Y
Yu Yang 已提交
275 276 277 278 279
            python_decayed_lr = python_decay_fn(
                global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
280
                msg='Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'.
Y
Yu Yang 已提交
281
                format(python_decay_fn.__name__,
282
                       str(step), str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
283 284

    def test_decay(self):
285 286 287 288 289 290 291 292 293
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
294
        decay_fns = [
295 296 297 298 299 300
            (exponential_decay, layers.exponential_decay, common_kwargs_true),
            (exponential_decay, layers.exponential_decay, common_kwargs_false),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
            (inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
            (inverse_time_decay, layers.inverse_time_decay,
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
             common_kwargs_false), (polynomial_decay, layers.polynomial_decay, {
                 "learning_rate": 1.0,
                 "decay_steps": 5,
                 "cycle": True
             }), (polynomial_decay, layers.polynomial_decay, {
                 "learning_rate": 1.0,
                 "decay_steps": 5,
                 "cycle": False
             }), (piecewise_decay, layers.piecewise_decay, {
                 "boundaries": [3, 6, 9],
                 "values": [0.1, 0.2, 0.3, 0.4]
             }), (cosine_decay, layers.cosine_decay, {
                 "learning_rate": 0.1,
                 "step_each_epoch": 100,
                 "epochs": 120
             }), (noam_decay, layers.noam_decay, {
                 "d_model": 0.01,
                 "warmup_steps": 200,
                 "learning_rate": 2.0
             })
Q
Qiao Longfei 已提交
321 322
        ]

323
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
324
            print("class=" + self.__class__.__name__ + " decay_fn=" +
325
                  py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
326 327 328
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
329
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
330 331


332
class TestLinearWamrupLearningRateDecay(unittest.TestCase):
333 334 335 336 337 338
    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10
Q
qingqing01 已提交
339
        start_lr = 0.1 / 3.
340 341 342 343 344 345 346 347 348 349 350
        end_lr = 0.1

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(
                fluid_decay_fn(**kwargs), warmup_steps, start_lr, end_lr)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
351 352 353
            # Step of NoamDecay starts from 1.
            if fluid_decay_fn.__name__ == 'noam_decay':
                step += 1
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                python_decayed_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                python_decayed_lr = python_decay_fn(
                    global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
                msg='Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'.
                format(python_decay_fn.__name__,
                       str(step), str(python_decayed_lr), str(lr_val[0])))


Q
qingqing01 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
    def run_scalar_lr(self, place, lr, start_lr, end_lr):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(lr, warmup_steps, start_lr,
                                                 end_lr)

        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                expected_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                expected_lr = lr
            self.assertAlmostEqual(
                expected_lr,
                lr_val[0],
                msg='Test failed, step {0}, expected {1}, but got {2}'.format(
                    step, expected_lr, lr_val[0]))

    def test_scalar_lr(self):
        def run_places(lr, start_lr, end_lr):
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.run_scalar_lr(p, lr, start_lr, end_lr)

        # float
        lr = 0.2
        start_lr = 0.1 / 3.
        end_lr = 0.2
        run_places(lr, start_lr, end_lr)

        # int end_lr
        lr = 2.
        start_lr = 0.1 / 3.
        end_lr = 1
        run_places(lr, start_lr, end_lr)

        # int
        lr = 1
        start_lr = 0
        end_lr = 1
        run_places(lr, start_lr, end_lr)


423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
                         var_list):
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


class TestReduceLROnPlateauDecay(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            # the decay rate must be less than 1.0
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, decay_rate=2.0)
            # the mode must be "min" or "max"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(learning_rate=1.0, mode="test")
            # the threshold_mode must be "rel" or "abs"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, threshold_mode="test")

            base_lr = 1.0
            patience = 3
            cooldown = 1
            decay_rate = 0.5
            threshold = 1e-4
            linear = fluid.dygraph.Linear(10, 10)

            for m, n in zip(['min', 'max', 'min', 'max'],
                            ['rel', 'rel', 'abs', 'abs']):
                kwargs = {
                    'learning_rate': base_lr,
                    'decay_rate': decay_rate,
                    'threshold': threshold,
                    'verbose': True,
                    'patience': patience,
                    'cooldown': cooldown,
                    'mode': m,
                    'threshold_mode': n,
                    'eps': 1e-6
                }
                print("class=" + fluid.dygraph.ReduceLROnPlateau.__name__ +
                      " kwargs=" + str(kwargs))
                lr = fluid.dygraph.ReduceLROnPlateau(**kwargs)
                sgd = fluid.optimizer.SGD(learning_rate=lr,
                                          parameter_list=linear.parameters())

                best = float("-10000") if m == "max" else float("10000")
                expected_lr = 1.0
                cooldown_counter = 0
                num_bad_epochs = 0
                var_list = [best, expected_lr, cooldown_counter, num_bad_epochs]
                step_num = 0
                epoch_num = 0
                for epoch in range(30):
                    total_loss = 0

                    for batch_id in range(2):
                        step_num += 1
                        x = fluid.dygraph.to_variable(
                            np.array([step_num]).astype('float32'))
                        loss = layers.sin(x)
                        sgd.minimize(loss)
                        total_loss += loss

                    epoch_num += 1
                    # get expected lr from fluid
                    avg_loss = total_loss / 1
                    lr.step(avg_loss)
                    actual_lr = lr().numpy()[0]

                    # get expected lr form python
                    expected_lr = reduce_lr_on_plateau(decay_rate, threshold,
                                                       cooldown, patience, m, n,
                                                       avg_loss, var_list)
                    self.assertEqual(
                        expected_lr,
                        actual_lr,
                        msg='Failed reduce lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
                        format(epoch_num, expected_lr, actual_lr))


Q
Qiao Longfei 已提交
529 530
if __name__ == '__main__':
    unittest.main()