fc_compute_test.cc 3.8 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/host/fc_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace host {

S
superjomn 已提交
25
TEST(fc_compute_naive, test) {
S
superjomn 已提交
26
  lite::Tensor x, w, b, out, out1;
S
superjomn 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  const int batch_size = 2;
  x.Resize({batch_size, 3});
  w.Resize({4, 3});
  b.Resize({1, 4});
  out.Resize({batch_size, 4});
  out1.Resize({batch_size, 4});

  auto x_data = x.mutable_data<float>();
  auto w_data = w.mutable_data<float>();
  auto b_data = b.mutable_data<float>();
  auto out_data = out.mutable_data<float>();
  auto out_data1 = out1.mutable_data<float>();

  for (int i = 0; i < product(x.dims()); i++) x_data[i] = i;
  for (int i = 0; i < product(w.dims()); i++) w_data[i] = i;
  for (int i = 0; i < product(b.dims()); i++) b_data[i] = i;

  fc_compute_naive(x_data, 3, batch_size,  //
                   w_data, 3, 4,           //
                   b_data, out_data);
  fc_compute_eigen(x_data, 3, batch_size,  //
                   w_data, 3, 4,           //
                   b_data, out_data1);

  for (int i = 0; i < product(out.dims()); i++) {
    EXPECT_NEAR(out_data[0], out_data1[0], 1e-6);
  }
}

S
superjomn 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
TEST(fc_host, init) {
  FcCompute fc;
  ASSERT_EQ(fc.precision(), PRECISION(kFloat));
  ASSERT_EQ(fc.target(), TARGET(kHost));
}

TEST(fc_host, algorithm) {
  using matrix_t = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
  using matrix_map_t = Eigen::Map<matrix_t>;

  // dim 10, 20
  std::vector<float> input(10 * 20);
  std::vector<float> w(20 * 20);
  std::vector<float> output(10 * 20);

  Eigen::Map<const matrix_t> input_mat(input.data(), 10, 20);
  Eigen::Map<const matrix_t> weight_mat(w.data(), 20, 20);
  matrix_map_t output_mat(output.data(), 10, 20);

  output_mat = weight_mat.transpose() * input_mat;
}

TEST(fc_host, compute) {
  FcCompute fc;
  operators::FcParam param;

S
superjomn 已提交
82 83 84 85
  lite::Tensor x;
  lite::Tensor w;
  lite::Tensor bias;
  lite::Tensor output;
S
superjomn 已提交
86

S
superjomn 已提交
87 88 89 90
  x.Resize(DDim(std::vector<int64_t>({1, 10, 20})));
  w.Resize(DDim(std::vector<int64_t>({20, 20})));
  bias.Resize(DDim(std::vector<int64_t>({1, 10})));
  output.Resize(DDim(std::vector<int64_t>({10, 20})));
S
superjomn 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

  auto* x_data = x.mutable_data<float>();
  auto* w_data = w.mutable_data<float>();
  auto* bias_data = bias.mutable_data<float>();
  auto* output_data = output.mutable_data<float>();

  for (int i = 0; i < 10 * 20; i++) x_data[i] = i;
  for (int i = 0; i < 20 * 20; i++) w_data[i] = i;
  for (int i = 0; i < 10; i++) bias_data[i] = i;
  for (int i = 0; i < 10 * 20; i++) output_data[i] = 0;

  param.in_num_col_dims = 2;
  param.input = &x;
  param.w = &w;
  param.bias = &bias;
  param.output = &output;
  param.in_mat_dims = x.dims();

  fc.SetParam(param);
  fc.Run();

  LOG(INFO) << "x";
  for (int i = 0; i < 10 * 20; i++) LOG(INFO) << x_data[i];

  LOG(INFO) << "output:";
  for (int i = 0; i < 10 * 20; i++) LOG(INFO) << output.data<float>()[i];
}

TEST(fc, retrive_op) {
  auto fc =
      KernelRegistry::Global().Create<TARGET(kHost), PRECISION(kFloat)>("fc");
S
superjomn 已提交
122
  ASSERT_TRUE(fc);
S
superjomn 已提交
123 124 125 126 127 128 129
}

}  // namespace host
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

S
superjomn 已提交
130
USE_LITE_KERNEL(fc, kHost, kFloat, kNCHW, def);