test_fill_constant_op.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20

T
tangwei12 已提交
21 22
import paddle.fluid.core as core
from paddle.fluid.op import Operator
23 24
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
25

26

L
liym27 已提交
27
# Situation 1: Attr(shape) is a list(without tensor)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
class TestFillConstantOp1(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class TestFillConstantOp3(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


T
tangwei12 已提交
84 85 86 87 88 89 90 91 92 93 94 95
class TestFillConstantOpWithSelectedRows(OpTest):
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out')
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
96 97 98 99
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

        self.assertTrue(np.array_equal(result_array, full_array))
T
tangwei12 已提交
100 101 102

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
103 104 105
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
106 107 108 109
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


192
# Test python API
L
liym27 已提交
193 194
class TestFillConstantAPI(OpTest):
    def test_api(self):
195 196 197 198 199 200 201 202
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")
L
liym27 已提交
203 204 205

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1)
206

L
liym27 已提交
207
        out_2 = fluid.layers.fill_constant(
208
            shape=[1, positive_2_int32], dtype="float32", value=1.1)
L
liym27 已提交
209 210

        out_3 = fluid.layers.fill_constant(
211 212 213 214 215 216 217
            shape=[1, positive_2_int64], dtype="float32", value=1.1)

        out_4 = fluid.layers.fill_constant(
            shape=shape_tensor_int32, dtype="float32", value=1.1)

        out_5 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype="float32", value=1.1)
L
liym27 已提交
218 219

        exe = fluid.Executor(place=fluid.CPUPlace())
220
        res_1, res_2, res_3, res_4, res_5 = exe.run(
L
liym27 已提交
221
            fluid.default_main_program(),
222 223 224 225 226
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5])
L
liym27 已提交
227 228 229 230

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
231 232
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
L
liym27 已提交
233 234


235 236 237
class TestFillConstantOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
238
            #for ci coverage
239 240 241 242 243 244 245 246
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
            self.assertRaises(
                ValueError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4')
            self.assertRaises(
247
                TypeError,
248 249 250 251 252
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='int16',
                out=x1)
253 254

            # The argument dtype of fill_constant_op must be one of bool, float16,
255 256
            #float32, float64, int32 or int64
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint8')
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2)

272
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
273 274 275 276 277
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

278
            # The argument shape's size of fill_constant_op must not be 0.
L
liym27 已提交
279 280 281 282 283
            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32")
                fluid.layers.fill_constant(
                    shape=shape, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool")
                fluid.layers.fill_constant(
                    shape=[shape, 2], dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

301

302 303
if __name__ == "__main__":
    unittest.main()