test_conv3d_op.py 28.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
L
liym27 已提交
22
import paddle.fluid as fluid
C
chengduoZH 已提交
23 24


L
liym27 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def conv3d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format="NCDHW"):

    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCDHW' or 'NDHWC'." %
                         str(data_format))

    channel_last = (data_format == "NDHWC")
    if channel_last:
        input = np.transpose(input, [0, 4, 1, 2, 3])

46
    in_n, in_c, in_d, in_h, in_w = input.shape
L
liym27 已提交
47 48 49 50

    f_n, f_c, f_d, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
51 52
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
53
    sub_out_c = out_c // group
L
liym27 已提交
54
    sub_f_n = f_n // group
55

C
chengduoZH 已提交
56 57 58
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

L
liym27 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
        input_data_shape = []
        if data_format == "NCDHW":
            input_data_shape = input.shape[2:5]
        elif data_format == "NDHWC":
            input_data_shape = input.shape[1:4]
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

    out_d = 1 + (in_d + pad_d_0 + pad_d_1 - (dilation[0] *
                                             (f_d - 1) + 1)) // stride[0]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[1] *
                                             (f_h - 1) + 1)) // stride[1]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[2] *
                                             (f_w - 1) + 1)) // stride[2]
C
chengduoZH 已提交
99

100 101
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
102 103 104 105
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

L
liym27 已提交
106 107
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_d_0, pad_d_1),
                               (pad_h_0, pad_h_1), (pad_w_0, pad_w_1)),
108 109
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
110

L
liym27 已提交
111
    filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
112 113 114
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

115 116 117 118 119 120
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
121 122 123 124
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

L
liym27 已提交
125 126
                    f_sub = filter_dilation[g * sub_f_n:(g + 1) *
                                            sub_f_n, :, :, :, :]
127 128 129
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
130
                                   axis=(1, 2, 3, 4))
L
liym27 已提交
131 132
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 4, 1])
133 134 135
    return out


L
liym27 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


C
chengduoZH 已提交
233 234
class TestConv3dOp(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
235
        self.op_type = "conv3d"
236
        self.use_cudnn = False
237 238
        self.use_mkldnn = False
        self.data_format = "AnyLayout"
K
Kexin Zhao 已提交
239 240
        self.dtype = np.float32
        self.init_kernel_type()
241
        self.init_group()
C
chengduoZH 已提交
242
        self.init_dilation()
243 244
        self.init_test_case()

C
chengduoZH 已提交
245 246 247
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
248
            'dilations': self.dilations
C
chengduoZH 已提交
249
        }
K
Kexin Zhao 已提交
250 251 252

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
L
liym27 已提交
253 254 255 256 257
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
            conv3d_param, ).astype(self.dtype)
C
chengduoZH 已提交
258

K
Kexin Zhao 已提交
259 260 261 262
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
C
chengduoZH 已提交
263
        self.attrs = {
264 265
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
266
            'groups': self.groups,
K
Kexin Zhao 已提交
267
            'dilations': self.dilations,
268 269 270
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
C
chengduoZH 已提交
271 272 273
        }
        self.outputs = {'Output': output}

274
    def has_cudnn(self):
275 276
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
277
    def test_check_output(self):
278
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
279
        self.check_output_with_place(place, atol=1e-5)
C
chengduoZH 已提交
280 281

    def test_check_grad(self):
K
Kexin Zhao 已提交
282 283
        if self.dtype == np.float16:
            return
284
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
285 286
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
287

C
chengduoZH 已提交
288
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
289 290
        if self.dtype == np.float16:
            return
291
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
292 293 294 295 296
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']))
C
chengduoZH 已提交
297 298

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
299 300
        if self.dtype == np.float16:
            return
301
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
302 303 304 305 306
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']))
C
chengduoZH 已提交
307

308 309 310
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
311
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
312
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
313
        f_c = self.input_size[1] // self.groups
314 315
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
316 317 318
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
319 320 321
    def init_dilation(self):
        self.dilations = [1, 1, 1]

322
    def init_group(self):
C
chengduoZH 已提交
323 324
        self.groups = 1

K
Kexin Zhao 已提交
325 326
    def init_kernel_type(self):
        pass
327

C
chengduoZH 已提交
328

C
chengduoZH 已提交
329 330 331 332
class TestCase1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
333
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
334
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
335
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
336 337 338
        self.filter_size = [6, f_c, 3, 3, 3]


C
chengduoZH 已提交
339 340 341
class TestWithGroup1(TestConv3dOp):
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
342 343


C
chengduoZH 已提交
344
class TestWithGroup2(TestCase1):
345
    def init_group(self):
C
chengduoZH 已提交
346 347
        self.groups = 3

348

C
chengduoZH 已提交
349 350 351 352
class TestWith1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
353
        self.input_size = [2, 3, 4, 4, 4]
C
chengduoZH 已提交
354
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
355
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
356 357 358 359
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
360

C
chengduoZH 已提交
361 362 363
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
364

365 366 367 368
class TestWithInput1x1Filter1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
369
        self.input_size = [2, 3, 1, 1, 1]
370
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
371
        f_c = self.input_size[1] // self.groups
372 373 374 375 376 377 378 379 380
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
381 382 383 384
class TestWithDilation(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
385
        self.input_size = [2, 3, 6, 6, 6]
C
chengduoZH 已提交
386
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
387
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
388 389 390 391 392 393 394
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
395

C
chengduoZH 已提交
396

L
liym27 已提交
397 398 399
#---------------- Conv3dCUDNN ----------------


400
class TestCUDNN(TestConv3dOp):
K
Kexin Zhao 已提交
401
    def init_kernel_type(self):
402
        self.use_cudnn = True
K
Kexin Zhao 已提交
403 404 405 406 407 408 409 410 411 412 413 414


class TestFP16CUDNN(TestConv3dOp):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
415 416


417
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
418
    def init_kernel_type(self):
419
        self.use_cudnn = True
K
Kexin Zhao 已提交
420 421 422 423 424 425 426 427 428 429 430 431


class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
432 433


434
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
435
    def init_kernel_type(self):
436
        self.use_cudnn = True
K
Kexin Zhao 已提交
437 438 439 440 441 442 443 444 445 446 447 448


class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
449 450


451
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
452
    def init_kernel_type(self):
453
        self.use_cudnn = True
K
Kexin Zhao 已提交
454 455 456 457 458 459 460 461 462 463 464 465


class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
466 467


468
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
469
    def init_kernel_type(self):
470
        self.use_cudnn = True
K
Kexin Zhao 已提交
471 472 473 474 475 476 477 478 479 480 481 482


class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
483 484


485 486 487 488 489 490
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


L
liym27 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
# ---- test asymmetric padding ----


class TestConv3dOp_2(OpTest):
    def setUp(self):
        self.op_type = "conv3d"
        self.use_cudnn = False
        self.use_mkldnn = False
        self.data_format = "NCDHW"
        self.dtype = np.float32
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()

        self.init_test_case_2()

        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilations': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
        output = conv3d_forward_naive(input, filter, self.groups, conv3d_param,
                                      self.padding_algorithm,
                                      self.data_format).astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
        }
        self.outputs = {'Output': output}

    def has_cudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

    def test_check_output(self):
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_output_with_place(place, atol=1e-5)

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03)

    def test_check_grad_no_filter(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCDHW"


class TestConv3dOp_AsyPadding(TestConv3dOp_2):
    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestCase1_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithGroup1_AsyPadding(TestConv3dOp_2):
    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithGroup2_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWith1x1_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithDilation_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 1, 0]
        self.padding_algorithm = "EXPLICIT"


create_test_cudnn_class(TestConv3dOp_AsyPadding)
create_test_cudnn_class(TestWithGroup1_AsyPadding)
create_test_cudnn_class(TestWithGroup2_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithDilation_AsyPadding)

create_test_padding_SAME_class(TestConv3dOp_AsyPadding)
create_test_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_padding_SAME_class(TestWith1x1_AsyPadding)

create_test_padding_VALID_class(TestConv3dOp_AsyPadding)
create_test_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_padding_VALID_class(TestWith1x1_AsyPadding)

create_test_cudnn_padding_SAME_class(TestConv3dOp_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding)

create_test_cudnn_padding_VALID_class(TestConv3dOp_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding)

create_test_channel_last_class(TestConv3dOp_AsyPadding)
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

create_test_channel_last_class(TestConv3dOp_AsyPadding)
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

create_test_cudnn_channel_last_class(TestConv3dOp_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

create_test_cudnn_channel_last_class(TestConv3dOp_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

武毅 已提交
719 720
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
721
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
722
#     def init_op_type(self):
723
#         self.op_type = "conv3d"
武毅 已提交
724

L
liym27 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

# --------- test python API ---------------
class TestConv3dAPI(OpTest):
    def test_api(self):

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=0,
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[1, 2, 1, 0, 1, 0],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NDHWC")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="SAME",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="VALID",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")


class TestConv3dAPI_Error(OpTest):
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5, 4],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=[0],
                data_format="NCDHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=0,
                dilation=[1, 1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding="SAMEE",
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=0,
                stride=0,
                padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv3d(
                input=x,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=3,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_7)


C
chengduoZH 已提交
921 922
if __name__ == '__main__':
    unittest.main()