test_machine_translation.py 11.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yang Yu 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yan Chunwei 已提交
16 17
import numpy as np
import paddle.v2 as paddle
18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
Yang Yu 已提交
22
import unittest
武毅 已提交
23
import os
Y
Yan Chunwei 已提交
24 25 26

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
Q
Qiao Longfei 已提交
27 28
hidden_dim = 32
word_dim = 16
Q
Qiao Longfei 已提交
29 30
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
31 32
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
33
beam_size = 2
Y
Yan Chunwei 已提交
34

Q
Qiao Longfei 已提交
35 36 37
decoder_size = hidden_dim


Y
Yang Yu 已提交
38
def encoder(is_sparse):
Q
Qiao Longfei 已提交
39
    # encoder
Q
Qiao Longfei 已提交
40
    src_word_id = pd.data(
Q
Qiao Longfei 已提交
41
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
42
    src_embedding = pd.embedding(
Q
Qiao Longfei 已提交
43 44 45
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
46
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
47 48
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
49 50 51 52 53
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
54

Y
Yang Yu 已提交
55
def decoder_train(context, is_sparse):
Q
Qiao Longfei 已提交
56
    # decoder
Q
Qiao Longfei 已提交
57
    trg_language_word = pd.data(
Q
Qiao Longfei 已提交
58
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
59
    trg_embedding = pd.embedding(
Q
Qiao Longfei 已提交
60 61 62
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
63
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
64 65
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
66
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
67 68
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
69 70
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
Q
Qiao Longfei 已提交
71 72
                              size=decoder_size,
                              act='tanh')
Q
Qiao Longfei 已提交
73 74 75 76 77 78

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
79 80

    return rnn()
Y
Yan Chunwei 已提交
81 82


Y
Yang Yu 已提交
83
def decoder_decode(context, is_sparse):
Q
Qiao Longfei 已提交
84 85
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
Y
Yang Yu 已提交
86
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
Q
Qiao Longfei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
Y
Yang Yu 已提交
118
            is_sparse=is_sparse)
Q
Qiao Longfei 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        # use rnn unit to update rnn
        current_state = pd.fc(input=[pre_ids_emb, pre_state_expanded],
                              size=decoder_size,
                              act='tanh')

        # use score to do beam search
        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        topk_scores, topk_indices = pd.topk(current_score, k=50)
        selected_ids, selected_scores = pd.beam_search(
            pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

        pd.less_than(x=counter, y=array_len, cond=cond)

    translation_ids, translation_scores = pd.beam_search_decode(
        ids=ids_array, scores=scores_array)

    # return init_ids, init_scores

    return translation_ids, translation_scores


def set_init_lod(data, lod, place):
Y
Yang Yu 已提交
151
    res = fluid.LoDTensor()
Q
Qiao Longfei 已提交
152 153 154 155 156
    res.set(data, place)
    res.set_lod(lod)
    return res


Y
Yan Chunwei 已提交
157 158 159 160 161 162 163 164 165
def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
Y
Yang Yu 已提交
166
    res = fluid.LoDTensor()
Y
Yan Chunwei 已提交
167 168 169 170 171
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


武毅 已提交
172
def train_main(use_cuda, is_sparse, is_local=True):
Y
Yang Yu 已提交
173 174 175 176 177 178
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    rnn_out = decoder_train(context, is_sparse)
Q
Qiao Longfei 已提交
179
    label = pd.data(
Q
Qiao Longfei 已提交
180
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
181
    cost = pd.cross_entropy(input=rnn_out, label=label)
Y
Yu Yang 已提交
182
    avg_cost = pd.mean(cost)
Q
Qiao Longfei 已提交
183

184 185 186 187
    optimizer = fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.1))
武毅 已提交
188
    optimize_ops, params_grads = optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
189 190 191

    train_data = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
192
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
Y
Yan Chunwei 已提交
193 194 195 196
        batch_size=batch_size)

    exe = Executor(place)

武毅 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

        batch_id = 0
        for pass_id in xrange(1):
            for data in train_data():
                word_data = to_lodtensor(map(lambda x: x[0], data), place)
                trg_word = to_lodtensor(map(lambda x: x[1], data), place)
                trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
                outs = exe.run(main_program,
                               feed={
                                   'src_word_id': word_data,
                                   'target_language_word': trg_word,
                                   'target_language_next_word': trg_word_next
                               },
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
                if batch_id > 3:
                    break
                batch_id += 1

    if is_local:
        train_loop(framework.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yan Chunwei 已提交
248 249


Y
Yang Yu 已提交
250 251 252 253 254 255 256
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decoder_decode(context, is_sparse)
Q
Qiao Longfei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [i for i in range(batch_size)] + [batch_size]
    init_lod = [init_lod, init_lod]

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)
    for _, data in enumerate(train_data()):
        init_ids = set_init_lod(init_ids_data, init_lod, place)
        init_scores = set_init_lod(init_scores_data, init_lod, place)

        src_word_data = to_lodtensor(map(lambda x: x[0], data), place)

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
            feed={
                'src_word_id': src_word_data,
                'init_ids': init_ids,
                'init_scores': init_scores
            },
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
        break


Y
Yang Yu 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
class TestMachineTranslation(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda, is_sparse):
    f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse'
                                         if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda, is_sparse)

    setattr(TestMachineTranslation, f_name, f)


def inject_test_decode(use_cuda, is_sparse, decorator=None):
    f_name = 'test_{0}_{1}_decode'.format('cuda'
                                          if use_cuda else 'cpu', 'sparse'
                                          if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda, is_sparse)

    if decorator is not None:
        f = decorator(f)

    setattr(TestMachineTranslation, f_name, f)


for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):
        inject_test_train(_use_cuda_, _is_sparse_)

for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):

        _decorator_ = None
        if _use_cuda_:
            _decorator_ = unittest.skip(
                reason='Beam Search does not support CUDA!')

        inject_test_decode(
            is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_)

Y
Yan Chunwei 已提交
347
if __name__ == '__main__':
Y
Yang Yu 已提交
348
    unittest.main()