pool_with_index_op.h 3.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
class MaxPoolWithIndexKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    Tensor* mask = context.Output<Tensor>("Mask");

    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
38
    if (context.Attr<bool>("globalPooling")) {
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      for (size_t i = 0; i < ksize.size(); ++i) {
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    switch (ksize.size()) {
      case 2: {
        paddle::operators::math::MaxPool2dWithIndexFunctor<Place, T>
            pool2d_forward;
        pool2d_forward(context.device_context(), *in_x, *out, *mask, ksize,
                       strides, paddings);
      } break;
      case 3: {
        paddle::operators::math::MaxPool3dWithIndexFunctor<Place, T>
            pool3d_forward;
        pool3d_forward(context.device_context(), *in_x, *out, *mask, ksize,
                       strides, paddings);
      } break;
    }
  }
};

template <typename Place, typename T>
class MaxPoolWithIndexGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
65
    const Tensor* mask = context.Input<Tensor>("Mask");
C
chengduoZH 已提交
66 67 68 69 70 71 72
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));

    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
73 74 75 76 77
    if (context.Attr<bool>("globalPooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
      }
    }
C
chengduoZH 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
      auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
      temp.device(context.GetEigenDevice<Place>()) =
          temp.constant(static_cast<T>(0));

      switch (ksize.size()) {
        case 2: {
          paddle::operators::math::MaxPool2dWithIndexGradFunctor<Place, T>
              pool2d_backward;
          pool2d_backward(context.device_context(), *in_x_grad, *out_grad,
                          *mask, ksize, strides, paddings);
        } break;
        case 3: {
          paddle::operators::math::MaxPool3dWithIndexGradFunctor<Place, T>
              pool3d_backward;
          pool3d_backward(context.device_context(), *in_x_grad, *out_grad,
                          *mask, ksize, strides, paddings);
        } break;
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle