skip_layernorm.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/skip_layernorm_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class SkipLayerNormOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
#if IS_TRT_VERSION_GE(6000)
    VLOG(4) << "convert fused skip layernorm op to tensorrt layer";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
    std::vector<nvinfer1::ITensor*> inputs;
    inputs.push_back(input1);
    inputs.push_back(input2);

    auto get_persistable_data = [&](const std::string& arg_name,
                                    framework::DDim* dims) -> float* {
      std::string var_name = op_desc.Input(arg_name).front();
      auto* temp_var = scope.FindVar(var_name);
      auto* temp_tensor = temp_var->GetMutable<framework::LoDTensor>();
      (*dims) = temp_tensor->dims();

      auto* temp_data = engine_->GetWeightCPUData(var_name, temp_tensor, false);
      return temp_data;
    };

    framework::DDim bias_dims, scale_dims;
    auto* bias = get_persistable_data("Bias", &bias_dims);
    auto* scale = get_persistable_data("Scale", &scale_dims);
    int bias_size = framework::product(bias_dims);
    int scale_size = framework::product(scale_dims);

    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
Z
zlsh80826 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#ifdef USE_NVINFER_PLUGIN
      auto creator = GetPluginRegistry()->getPluginCreator(
          "CustomSkipLayerNormPluginDynamic", "1");
      assert(creator != nullptr);
      int type = static_cast<int>((engine_->WithFp16() == 1)
                                      ? nvinfer1::DataType::kHALF
                                      : nvinfer1::DataType::kFLOAT);
      int ld = input1->getDimensions().d[2];  // hidden dimension
      assert(ld > 0);

      const std::vector<nvinfer1::PluginField> fields{
          {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
          {"ld", &ld, nvinfer1::PluginFieldType::kINT32, 1},
          {"beta", bias, nvinfer1::PluginFieldType::kFLOAT32, bias_size},
          {"gamma", scale, nvinfer1::PluginFieldType::kFLOAT32, scale_size},
      };
      nvinfer1::PluginFieldCollection* pluginPtr =
          static_cast<nvinfer1::PluginFieldCollection*>(
              malloc(sizeof(*pluginPtr) +
                     fields.size() *
                         sizeof(nvinfer1::PluginField)));  // remember to free
      pluginPtr->nbFields = static_cast<int>(fields.size());
      pluginPtr->fields = fields.data();

      auto pluginObj =
          creator->createPlugin("CustomSkipLayerNormPluginDynamic", pluginPtr);
      nvinfer1::Permutation permutation{1, 0, 2, 3, 4};
      auto trans_layer0 = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *inputs[0]);
      auto trans_layer1 = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *inputs[1]);
      trans_layer0->setFirstTranspose(permutation);
      trans_layer1->setFirstTranspose(permutation);
      std::vector<nvinfer1::ITensor*> trans_tensors;
      trans_tensors.emplace_back(trans_layer0->getOutput(0));
      trans_tensors.emplace_back(trans_layer1->getOutput(0));
      auto plugin_layer = engine_->network()->addPluginV2(
          trans_tensors.data(), trans_tensors.size(), *pluginObj);

      assert(plugin_layer != nullptr);
      auto trans_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *plugin_layer->getOutput(0));
      assert(trans_layer != nullptr);
      trans_layer->setFirstTranspose(permutation);
      layer = trans_layer;
#else
      float eps = BOOST_GET_CONST(float, op_desc.GetAttr("epsilon"));
100 101 102 103 104
      bool ban_fp16 = engine_->disable_trt_plugin_fp16();
      plugin::SkipLayerNormPluginDynamic* plugin =
          new plugin::SkipLayerNormPluginDynamic(bias, scale, bias_size,
                                                 scale_size, eps, ban_fp16);
      layer = engine_->AddPluginV2(inputs.data(), 2, plugin);
Z
zlsh80826 已提交
105
#endif
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static"
          "shape mode, which is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface"
          " to set the shape information to run the dynamic shape mode."));
    }

    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "skip_layernorm", {output_name}, test_mode);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "You are running the TRT Dynamic Shape mode, need to confirm that "
        "your TRT version is no less than 6.0"));
#endif
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(skip_layernorm, SkipLayerNormOpConverter);