common.py 92.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16
import paddle
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19 20 21
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
22
from ...fluid import dygraph_utils
23
# TODO: define the common functions to build a neural network
24 25
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
26 27 28
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
29
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
H
hong 已提交
30
from ...fluid.framework import _varbase_creator, _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
X
xiaoting 已提交
31

Z
zhiboniu 已提交
32 33
from ...fluid import dygraph_utils

W
wanghuancoder 已提交
34
from paddle import _C_ops
Z
zhiboniu 已提交
35 36 37
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
38
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
39
from paddle.static import default_main_program
40

41 42
__all__ = []

X
xiaoting 已提交
43

44 45 46
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

47
    Return a col buffer of sliding local blocks of input x, also known
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
94
        Tensor, The tensor corresponding to the sliding local blocks.
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    if in_dygraph_mode():
        return _C_ops.final_state_unfold(x, kernel_sizes, strides, paddings,
                                         dilations)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
157 158 159 160 161 162 163 164 165
    helper.append_op(type="unfold",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs={
                         "kernel_sizes": kernel_sizes,
                         "strides": strides,
                         "paddings": paddings,
                         "dilations": dilations
                     })
166 167 168
    return out


X
xiaoting 已提交
169
def interpolate(x,
170 171 172 173
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
174
                align_mode=0,
175 176
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
177
    """
S
swtkiwi 已提交
178

179
    This API resizes a batch of images.
180 181
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
182
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
183 184
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
185
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
186

X
xiaoting 已提交
187
    Supporting resample methods:
188 189 190 191 192
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
193
        'area': Area interpolation
194 195 196 197

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
212
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
213 214 215 216 217 218 219
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

220 221 222 223 224 225
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to 
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or 
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
226 227 228 229
    Example:

    .. code-block:: text

230
        For scale_factor:
X
xiaoting 已提交
231 232 233 234 235
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

236 237 238 239 240 241 242 243 244 245 246
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
247
        Nearest neighbor interpolation:
X
xiaoting 已提交
248

X
xiaoting 已提交
249 250 251 252 253
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
254

X
xiaoting 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

296 297 298
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
299 300
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
301
    
X
xiaoting 已提交
302 303
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
304
    
X
xiaoting 已提交
305 306
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
307
    
X
xiaoting 已提交
308 309
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
310
    
X
xiaoting 已提交
311
    Parameters:
X
xiaoting 已提交
312
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
313
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
314
        size (list|tuple|Tensor|None): Output shape of image resize
315 316
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
317
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
318
             If a Tensor, its dimensions size should be a 1.
319 320 321
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
322
             Default: None.
323
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
324
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
325 326
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
327
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
328 329 330 331
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
332
        data_format (str, optional): Specify the data format of the input, and the data format of the output
333
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
334 335 336
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
337 338 339
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
340
    Returns:
341
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
342 343
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
344

345

X
xiaoting 已提交
346 347 348
    Examples:
        .. code-block:: python

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
		import paddle
		import paddle.nn.functional as F

		input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
		output_1 = F.interpolate(x=input_data, size=[12,12])
		print(output_1.shape)
		    # [2L, 3L, 12L, 12L]

		# given scale
		output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
		print(output_2.shape)
		# [2L, 3L, 12L, 10L]

		# bilinear interp
		output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
		print(output_2.shape)
		# [2L, 3L, 12L, 10L]
X
xiaoting 已提交
366
    """
367 368 369 370 371 372 373 374 375 376
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
377
        'AREA',
378
    ]
X
xiaoting 已提交
379 380
    if resample not in resample_methods:
        raise ValueError(
381
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
382
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
383

X
xiaoting 已提交
384
    if resample in ['LINEAR'] and len(x.shape) != 3:
385
        raise ValueError("'linear' only support 3-D tensor.")
386

387 388 389 390 391
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
392
    if resample == 'TRILINEAR' and len(x.shape) != 5:
393 394 395 396
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
397 398 399

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
400

X
xiaoting 已提交
401 402
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
403 404 405 406
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
407

X
xiaoting 已提交
408
    if resample == 'AREA':
409 410
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
411 412 413 414 415 416 417 418
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
419

X
xiaoting 已提交
420
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
421
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
422
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
423 424
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
425
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
426
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
427 428 429
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
430
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
431 432 433 434 435 436 437
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

438
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
439
        data_layout = 'NCHW'
440
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
441 442
        data_layout = 'NHWC'

X
xiaoting 已提交
443 444 445 446
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
447 448 449 450 451 452 453 454 455 456
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

457 458
    out_shape = size
    scale = scale_factor
459 460
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
461
    if out_shape is not None:
Z
zhiboniu 已提交
462
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
463 464 465
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
466
            if in_dynamic_mode():
467 468
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
469 470
                else:
                    out_shape = list(out_shape)
471 472 473
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
474
            if not (_is_list_or_turple_(out_shape)):
475
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
498 499 500 501 502
                        fill_constant([1],
                                      'int32',
                                      dim,
                                      force_cpu=True,
                                      out=temp_out)
X
xiaoting 已提交
503 504 505 506
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
507
            if len(x.shape) == 3:
508 509
                if len(out_shape) != 1:
                    raise ValueError(
510
                        "size length should be 2 for input 3-D tensor")
511 512 513 514 515
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
516
            if len(x.shape) == 4:
X
xiaoting 已提交
517
                if len(out_shape) != 2:
518
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
519 520 521 522 523 524 525 526
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
527
            if len(x.shape) == 5:
X
xiaoting 已提交
528
                if len(out_shape) != 3:
529
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
530 531 532 533 534 535 536 537 538 539 540 541
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
542
        if in_dynamic_mode() and isinstance(scale, Variable):
543
            scale = list(scale.numpy())
X
xiaoting 已提交
544 545 546 547 548 549
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
550 551 552 553
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
554
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
555 556 557 558 559 560 561 562
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
563 564
        else:
            raise TypeError(
565 566
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
567

Z
zhiboniu 已提交
568
    if in_dynamic_mode():
X
xiaoting 已提交
569 570 571 572 573 574 575
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
576
            if in_dygraph_mode():
577 578 579 580 581 582 583 584
                out = _C_ops.final_state_linear_interp(
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
585 586
            else:
                out = _C_ops.linear_interp_v2(x, *dy_attr)
587
        elif resample_type == "bilinear":
588 589 590 591 592 593 594 595 596 597 598
            if in_dygraph_mode():
                out = _C_ops.final_state_bilinear_interp(
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
                out = _C_ops.bilinear_interp_v2(x, *dy_attr)
599
        elif resample_type == "trilinear":
600 601 602 603 604 605 606 607 608 609 610
            if in_dygraph_mode():
                out = _C_ops.final_state_trilinear_interp(
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
                out = _C_ops.trilinear_interp_v2(x, *dy_attr)
611
        elif resample_type == "nearest":
612 613 614 615 616 617 618 619 620 621 622
            if in_dygraph_mode():
                out = _C_ops.final_state_nearest_interp(
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
                out = _C_ops.nearest_interp_v2(x, *dy_attr)
623
        elif resample_type == "bicubic":
624 625 626 627 628 629 630 631 632 633 634
            if in_dygraph_mode():
                out = _C_ops.final_state_bicubic_interp(
                    x, inputs['OutSize'] if 'OutSize' in inputs else None,
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
                    attrs['data_layout'], attrs['out_d'], attrs['out_h'],
                    attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'], attrs['align_corners'],
                    attrs['align_mode'])
            else:
                out = _C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
635
        return out
X
xiaoting 已提交
636
    out = helper.create_variable_for_type_inference(dtype)
637 638 639 640
    helper.append_op(type='{}_interp_v2'.format(resample_type),
                     inputs=inputs,
                     outputs={"Out": out},
                     attrs=attrs)
X
xiaoting 已提交
641
    return out
L
littletomatodonkey 已提交
642 643


X
xiaoting 已提交
644 645 646 647 648 649 650 651 652
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
653
    This API resizes a batch of images.
654

X
xiaoting 已提交
655 656 657
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
658 659
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
684

X
xiaoting 已提交
685 686 687
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
688

X
xiaoting 已提交
689 690 691
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
692 693 694 695 696 697 698

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
699 700
    Example:
    .. code-block:: text
701
    
X
xiaoting 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
787
        size (list|tuple|Tensor|None, optional): Output shape of image resize
X
xiaoting 已提交
788 789
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
790
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
791
             If a Tensor , its dimensions size should be a 1.
792
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
793 794 795
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if 
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
796
             Default: None.
797
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
798
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
799
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
800 801 802
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
803
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
818

X
xiaoting 已提交
819 820
        Examples:
        .. code-block:: python
821 822 823
	
		import paddle
		import paddle.nn as nn
X
xiaoting 已提交
824

825 826 827 828 829 830
		input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
		upsample_out = paddle.nn.Upsample(size=[12,12])

		output = upsample_out(x=input_data)
		print(output.shape)
		# [2L, 3L, 12L, 12L]
X
xiaoting 已提交
831 832 833 834 835 836

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


837 838 839 840
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
841
    See :ref:`api_nn_Bilinear` for details and output shape.
842 843 844 845 846 847 848 849 850 851

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
852
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
853 854 855 856

    Examples:
       .. code-block:: python

857 858
		import paddle
		import paddle.nn.functional as F
859

860 861 862 863
		x1 = paddle.randn((5, 5)).astype(paddle.float32)
		x2 = paddle.randn((5, 4)).astype(paddle.float32)
		w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
		b = paddle.randn((1, 1000)).astype(paddle.float32)
864

865 866 867
		result = F.bilinear(x1, x2, w, b)
		print(result.shape)
		# [5, 1000]
868 869
    """

870 871 872
    if in_dygraph_mode():
        return _C_ops.final_state_bilinear_tensor_product(x1, x2, weight, bias)
    elif _non_static_mode():
W
wanghuancoder 已提交
873
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
874 875 876 877 878 879 880 881 882 883 884

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

885 886 887
    helper.append_op(type="bilinear_tensor_product",
                     inputs=inputs,
                     outputs={"Out": out})
888 889 890 891

    return out


892 893 894 895 896 897 898 899 900 901 902 903 904 905
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
906 907 908 909
        p (float|int, optional): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
910 911 912 913 914 915 916 917 918 919

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
920
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
921 922 923 924

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

925

926 927
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
928

929
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
930 931 932

        ..  code-block:: text

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

958 959


960
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
961 962 963

        ..  code-block:: text

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
992
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
993 994 995 996 997 998 999 1000 1001 1002
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1003 1004 1005

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1006 1007

        .. code-block:: python
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		import paddle

		x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
		y_train = paddle.nn.functional.dropout(x, 0.5)
		y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
		y_0 = paddle.nn.functional.dropout(x, axis=0)
		y_1 = paddle.nn.functional.dropout(x, axis=1)
		y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
		print(x)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[1., 2., 3.],
		#         [4., 5., 6.]])
		print(y_train)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[2. , 0. , 6. ],
		#         [8. , 0. , 12.]])
		print(y_test)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[1., 2., 3.],
		#         [4., 5., 6.]])
		print(y_0)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[0. , 0. , 0. ],
		#         [8. , 10., 12.]])
		print(y_1)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[2. , 0. , 6. ],
		#         [8. , 0. , 12.]])
		print(y_01)
		# Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[0. , 0. , 0. ],
		#         [8. , 0. , 12.]])
1041 1042

    """
1043 1044 1045 1046 1047 1048 1049 1050
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
        if p == 0: return x
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1051 1052
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1053 1054
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1055
    if axis and not isinstance(axis, (int, list, tuple)):
1056 1057 1058 1059 1060 1061
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

H
hong 已提交
1062
        if _non_static_mode():
1063 1064
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1065 1066 1067 1068 1069 1070

            if in_dygraph_mode():
                out, mask = _C_ops.final_state_dropout( x, None, p, not training, mode, \
                    seed if seed is not None else 0, seed is not None)

                return out
1071 1072 1073 1074 1075
            out, mask = _C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                       not training, 'fix_seed', seed
                                       is not None, 'seed',
                                       seed if seed is not None else 0,
                                       'dropout_implementation', mode)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1086 1087 1088
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1089 1090 1091 1092 1093 1094

            if isinstance(dropout_prob,
                          Variable) and not dropout_prob.shape != [1]:
                raise TypeError(
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
                    .format(p.shape))
1095 1096 1097 1098 1099 1100 1101 1102 1103
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1104 1105
        attrs = get_attrs(helper.main_program, p, not training, seed)

1106 1107 1108 1109 1110 1111 1112
        helper.append_op(type='dropout',
                         inputs={'X': [x]},
                         outputs={
                             'Out': [out],
                             'Mask': [mask]
                         },
                         attrs=attrs)
1113 1114
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1115
        if not in_dynamic_mode():
1116 1117 1118 1119 1120
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
1121
                return paddle.scale(x, scale=0.)
1122

1123
            scale_input = paddle.scale(
1124 1125 1126 1127
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
Z
zhiboniu 已提交
1128
            if not in_dynamic_mode():
1129
                input_shape_tensor = paddle.shape(x)
1130
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1131 1132
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
1133 1134 1135
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1136 1137
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}"
                    .format(len(input_shape), len(drop_axes)))
1138
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1139
            if not in_dynamic_mode():
1140 1141 1142 1143 1144
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1145 1146

            #get mask
1147 1148 1149 1150
            random_tensor = paddle.uniform(mask_shape,
                                           dtype='float32',
                                           min=0.,
                                           max=1.0)
Z
zhiboniu 已提交
1151
            p = full(shape=[1], fill_value=p, dtype='float32')
1152
            keep_mask = paddle.greater_equal(random_tensor, p)
1153

1154 1155
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1156 1157 1158
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1159
            ret = paddle.scale(
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1177
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1178 1179 1180 1181 1182
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1183

1184 1185
    Examples:
        .. code-block:: python
1186

1187 1188
            import paddle

1189
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1190 1191 1192 1193
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1194 1195 1196 1197
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1209 1210 1211 1212 1213 1214
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCHW' else [0, 3],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1230
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1231 1232 1233 1234 1235
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1236

1237 1238
    Examples:
        .. code-block:: python
1239

1240 1241 1242 1243 1244 1245 1246 1247
		import paddle

		x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
		y_train = paddle.nn.functional.dropout3d(x)  #train
		y_test = paddle.nn.functional.dropout3d(x, training=False) #test
		print(x[0,0,:,:,:])
		print(y_train[0,0,:,:,:]) # may all 0
		print(y_test[0,0,:,:,:])
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1261 1262 1263 1264 1265 1266
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1267 1268


1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		import paddle

		x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
		y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
		y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
		print(y_train)
		# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[-0.10721093, -0.77919382],
		#         [-0.10721093,  1.66559887]]) (randomly)
		print(y_test)
		# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
		#        [[-1.,  1.],
		#         [-1.,  1.]])
1301 1302 1303 1304 1305 1306
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1307
    if not in_dynamic_mode():
1308 1309 1310 1311
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1312
        if p == 1:
1313
            return paddle.scale(x, scale=0.)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1325 1326 1327 1328
        random_tensor = paddle.uniform(input_shape,
                                       dtype='float32',
                                       min=0.,
                                       max=1.0)
Z
zhiboniu 已提交
1329
        p = full(shape=[1], fill_value=p, dtype='float32')
1330 1331 1332
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1333
            full(shape=input_shape, fill_value=1., dtype=dtype), keep_mask)
1334 1335

        #apply mask
Z
zhiboniu 已提交
1336
        b = full(shape=[1], fill_value=b, dtype=dtype)
1337
        y = paddle.add(paddle.multiply(x, keep_mask),
1338
                       paddle.scale(drop_mask, scale=alpha_p))
1339
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1340 1341 1342 1343 1344
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1345 1346 1347
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1348 1349 1350
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1351 1352 1353 1354 1355
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1356
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1357 1358 1359
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will 
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
L
littletomatodonkey 已提交
1360 1361 1362
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1363 1364 1365 1366 1367 1368 1369 1370
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`,
1371
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
1372 1373
           the input data. Default is "NCHW",
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
littletomatodonkey 已提交
1374
                    
1375 1376
    Returns: 
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1377

1378 1379
    Example:
    
L
littletomatodonkey 已提交
1380 1381 1382 1383 1384 1385
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1386 1387 1388 1389 1390 1391 1392 1393 1394
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1395 1396 1397 1398 1399 1400 1401 1402
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1403
            Case 2:
L
littletomatodonkey 已提交
1404 1405 1406 1407 1408 1409 1410
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1411
            Case 3:
L
littletomatodonkey 已提交
1412 1413 1414 1415 1416 1417 1418
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1419
            Case 4:
L
littletomatodonkey 已提交
1420 1421 1422 1423 1424 1425 1426
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1427
    Examples:
L
littletomatodonkey 已提交
1428
        .. code-block:: python
L
littletomatodonkey 已提交
1429

L
littletomatodonkey 已提交
1430 1431 1432 1433 1434
            import paddle
            import paddle.nn.functional as F
            
            # example 1
            x_shape = (1, 1, 3)
1435
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1436
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1437
            print(y)
L
littletomatodonkey 已提交
1438
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1439
            
L
littletomatodonkey 已提交
1440
            # example 2
1441
            x_shape = (1, 1, 3)
1442
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1443 1444 1445 1446 1447
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 3
L
littletomatodonkey 已提交
1448
            x_shape = (1, 1, 2, 3)
1449
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1450 1451
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

1467 1468
    if mode == "constant" and isinstance(
            pad, (list, tuple)) and len(pad) == x_dim * 2:
1469 1470
        paddings = pad
        pad_value = value
1471 1472 1473 1474 1475

        if in_dygraph_mode():
            out = _C_ops.final_state_pad(x, paddings, float(pad_value))
            return out

1476 1477 1478 1479 1480 1481 1482 1483
        check_variable_and_dtype(x, 'x', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
            'complex128'
        ], "pad")

        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1484 1485 1486 1487 1488 1489 1490
        helper.append_op(type='pad',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'paddings': paddings,
                             'pad_value': float(pad_value)
                         })
1491
        return out
L
littletomatodonkey 已提交
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1506 1507 1508 1509 1510 1511 1512 1513
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1514
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1515 1516 1517
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1518
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1519 1520 1521 1522 1523
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1524
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1525 1526 1527
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1528
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1529
    else:
1530
        pad = list(pad)
L
littletomatodonkey 已提交
1531 1532 1533 1534 1535
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1536
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1537 1538 1539
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1540
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1541 1542 1543 1544 1545
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1546
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1547 1548 1549
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1550
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1551

J
Jiabin Yang 已提交
1552
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1553
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1554 1555 1556
            pad = pad.numpy().tolist()
        out = _C_ops.final_state_pad3d(x, pad, mode, value, data_format)
    else:
1557
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1558 1559
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1560 1561 1562
            out = _C_ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                               "data_format", data_format, "name", name)
        else:
J
Jiabin Yang 已提交
1563 1564 1565 1566 1567 1568 1569
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1570

J
Jiabin Yang 已提交
1571
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1572

J
Jiabin Yang 已提交
1573 1574
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1575 1576 1577 1578
            helper.append_op(type='pad3d',
                             inputs=inputs,
                             outputs={"Out": out},
                             attrs=attrs)
L
littletomatodonkey 已提交
1579 1580

    if len(unsqueezed_dim) != 0:
1581
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1582 1583 1584 1585

    return out


1586 1587 1588 1589 1590 1591 1592 1593 1594
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1595
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1596 1597 1598 1599
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1600
    Returns: 
1601
        Tensor, padded with 0 according to pad and data type is same as input.
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

    return pad(x,
               pad=padding,
               mode='constant',
               value=0,
               data_format=data_format,
               name=name)


Y
Yang Zhang 已提交
1627
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1628
    """
Y
Yang Zhang 已提交
1629
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1630 1631 1632 1633

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1634 1635
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
L
littletomatodonkey 已提交
1636
                    
1637 1638
    Returns: 
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1639 1640 1641

    Examples:
        .. code-block:: text
1642

L
littletomatodonkey 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1652
                axis = 1
L
littletomatodonkey 已提交
1653 1654 1655 1656 1657
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1658

L
littletomatodonkey 已提交
1659 1660 1661
            import paddle
            import paddle.nn as nn

1662 1663 1664 1665
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1666
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1667
            print(result)
1668
            # [0.97689527,  0.99996042, -0.55138415]
L
littletomatodonkey 已提交
1669 1670
            
    """
1671 1672 1673
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1674
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1675 1676
    cos_sim = w12 / n12
    return cos_sim
1677 1678 1679


def linear(x, weight, bias=None, name=None):
1680
    r"""
1681

1682 1683
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1684 1685 1686

    .. math::

1687
        Out = XW + b
1688

1689
    where :math:`W` is the weight and :math:`b` is the bias.
1690

1691 1692 1693 1694 1695 1696 1697
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` , 
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1698

1699 1700 1701 1702 1703 1704 1705
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1706 1707

    Returns:
1708 1709
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1710 1711 1712 1713 1714 1715

    Examples:
        .. code-block:: python
          
          import paddle
          
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1729
    """
J
Jiabin Yang 已提交
1730
    if in_dygraph_mode():
1731
        #TODO(jiabin): using addmm for fast forward route
1732
        return _C_ops.final_state_linear(x, weight, bias)
1733
    else:
J
Jiabin Yang 已提交
1734 1735 1736
        if _in_legacy_dygraph():
            pre_bias = _C_ops.matmul_v2(x, weight, 'trans_x', False, 'trans_y',
                                        False)
1737

J
Jiabin Yang 已提交
1738 1739
            if bias is None:
                return pre_bias
1740

J
Jiabin Yang 已提交
1741
            return _C_ops.elementwise_add(pre_bias, bias)
1742
        else:
J
Jiabin Yang 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                        'linear')

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1754 1755 1756 1757
            helper.append_op(type='matmul_v2',
                             inputs=inputs,
                             outputs={'Out': tmp},
                             attrs=attrs)
J
Jiabin Yang 已提交
1758 1759
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1760 1761 1762 1763 1764 1765 1766
                helper.append_op(type='elementwise_add',
                                 inputs={
                                     'X': [tmp],
                                     'Y': [bias]
                                 },
                                 outputs={'Out': [res]},
                                 attrs={'axis': len(x.shape) - 1})
J
Jiabin Yang 已提交
1767 1768 1769
            else:
                res = tmp
            return res
1770 1771 1772


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1773
    r"""
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    Label smoothing is a mechanism to regularize the classifier layer and is called
    label-smoothing regularization (LSR).

    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1825
            print(output)
1826 1827 1828 1829
            
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1830 1831 1832
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

1833 1834 1835 1836
    if in_dygraph_mode():
        return _C_ops.final_state_label_smooth(label, prior_dist,
                                               float(epsilon))

1837
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1838
        return _C_ops.label_smooth(label, prior_dist, 'epsilon', float(epsilon))
1839 1840 1841 1842 1843 1844 1845

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1846 1847 1848 1849 1850 1851 1852
    helper.append_op(type="label_smooth",
                     inputs={
                         "X": label,
                         "PriorDist": prior_dist
                     } if prior_dist else {"X": label},
                     outputs={"Out": smooth_label},
                     attrs={"epsilon": float(epsilon)})
1853
    return smooth_label
1854 1855


G
Guoxia Wang 已提交
1856
def class_center_sample(label, num_classes, num_samples, group=None):
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
    The process of sampling subset class centers is straightforward: 

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly 
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
    
    .. hint::
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive 
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1873

1874 1875
        The API supports CPU, single GPU and multi GPU.

1876 1877 1878 1879
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1880
    Args:
G
Guoxia Wang 已提交
1881 1882
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1883
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1884
        num_samples (int): A positive integer to specify the number of class center to sample.
1885 1886 1887
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1888 1889 1890 1891 1892 1893 1894 1895

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1896
        :name: code-example1
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1919
        :name: code-example2
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
        
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
1960 1961 1962 1963 1964 1965 1966
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1967 1968
        return

1969
    ring_id = 0
1970 1971
    rank = 0
    nranks = 1
1972 1973 1974 1975 1976 1977 1978
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1979 1980 1981 1982 1983 1984

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1985 1986 1987
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1988
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1989
        raise ValueError('Expected label_size > 0 \
1990
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1991 1992 1993 1994

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
1995
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
1996 1997

    seed = None
1998 1999 2000
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2001 2002 2003 2004 2005
    if in_dygraph_mode():
        return _C_ops.final_state_class_center_sample(
            label, num_classes, num_samples, ring_id, rank, nranks, seed
            is not None, seed if seed is not None else 0)
    elif paddle.in_dynamic_mode():
2006
        remapped_label, sampled_class_center = _C_ops.class_center_sample(
2007
            label, 'num_classes', num_classes, 'num_samples', num_samples,
2008 2009
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed', seed
            is not None, 'seed', seed if seed is not None else 0)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    helper.append_op(type=op_type,
                     inputs={'Label': label},
                     outputs={
                         'RemappedLabel': remapped_label,
                         'SampledLocalClassCenter': sampled_class_center
                     },
                     attrs={
                         'num_classes': num_classes,
                         'num_samples': num_samples,
                         'ring_id': ring_id,
                         'nranks': nranks,
                         'rank': rank,
                         'fix_seed': seed is not None,
                         'seed': seed if seed is not None else 0
                     })
2035
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046


def fold(x,
         output_sizes,
         kernel_sizes,
         strides=1,
         paddings=0,
         dilations=1,
         name=None):
    r"""
    
2047
    Combines an array of sliding local blocks into a large containing
X
xiaoting 已提交
2048 2049 2050 2051 2052 2053 2054 2055
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each 
    combined value in the resulting large tensor by summing all values from all containing blocks. 


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2056 2057 2058 2059
    
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2060 2061 2062 2063

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2064
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2065
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2066
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2067
                                  or an integer k treated as [k, k].
2068
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2069 2070
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2071
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2072 2073 2074 2075 2076 2077
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2078
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2097 2098 2099
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

    assert len(x.shape) == 3, \
            "input should be the format of [N, C, L]"

X
xiaoting 已提交
2110 2111 2112
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

X
xiaoting 已提交
2113 2114 2115
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
X
xiaoting 已提交
2116 2117
        assert _is_list_or_turple_(output_sizes) and (len(output_sizes) == 2), \
            "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2118 2119 2120 2121

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
X
xiaoting 已提交
2122 2123
        assert _is_list_or_turple_(kernel_sizes) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2124 2125 2126 2127

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
X
xiaoting 已提交
2128 2129
        assert _is_list_or_turple_(strides) and (len(strides) == 2), \
            "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2130 2131 2132 2133

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
X
xiaoting 已提交
2134 2135
        assert _is_list_or_turple_(dilations) and (len(dilations) == 2), \
            "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

X
xiaoting 已提交
2153 2154 2155 2156
    if in_dygraph_mode():
        out = _C_ops.final_state_fold(x, output_sizes, kernel_sizes, strides,
                                      paddings, dilations)
    elif in_dynamic_mode():
X
xiaoting 已提交
2157 2158 2159 2160 2161
        out = _C_ops.fold(x, "output_sizes", output_sizes, "kernel_sizes",
                          kernel_sizes, "strides", strides, "paddings",
                          paddings, "dilations", dilations)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        helper.append_op(type="fold",
                         inputs={"X": x},
                         outputs={"Y": out},
                         attrs={
                             "output_sizes": output_sizes,
                             "kernel_sizes": kernel_sizes,
                             "strides": strides,
                             "paddings": paddings,
                             "dilations": dilations
                         })
X
xiaoting 已提交
2172
    return out