norm.py 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define normalization api
16 17 18 19
import paddle
import paddle.fluid as fluid
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper
20
from ...framework import create_parameter
21 22
from ..initializer import Constant
from ...framework import ParamAttr
Z
zhiboniu 已提交
23
from ...fluid import dygraph_utils
24
import numbers
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from paddle import in_dynamic_mode
27
from paddle.fluid.framework import core, _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
28

29 30
__all__ = []

31 32

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
33
    r"""
34 35 36 37
    This op normalizes ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes

    .. math::

38
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
39

40
    .. math::
41
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
42

43
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
44 45


N
Noel 已提交
46
    Parameters:
47 48
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
        p (float|int, optional): The exponent value in the norm formulation. Default: 2
49
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
            x = np.arange(6, dtype=np.float32).reshape(2,3)
66
            x = paddle.to_tensor(x)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            y = F.normalize(x)
            print(y.numpy())
            # [[0.         0.4472136  0.8944272 ]
            # [0.42426404 0.5656854  0.7071067 ]]

            y = F.normalize(x, p=1.5)
            print(y.numpy())
            # [[0.         0.40862012 0.81724024]
            # [0.35684016 0.4757869  0.5947336 ]]

            y = F.normalize(x, axis=0)
            print(y.numpy())
            # [[0.         0.24253564 0.37139067]
            # [1.         0.97014254 0.9284767 ]]
    """
82 83 84 85 86 87
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
        out = _C_ops.final_state_p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.elementwise_max(out, eps)

    if _in_legacy_dygraph():
88
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
89 90
        out = _C_ops.p_norm(x, 'axis', axis, 'porder', float(p), 'keepdim',
                            True, 'epsilon', epsilon)
W
wanghuancoder 已提交
91
        return x / _C_ops.elementwise_max(out, eps)
92 93 94

    check_type(p, 'p', (float, int), 'normalize')
    check_type(axis, 'axis', (int), 'normalize')
G
Guoxia Wang 已提交
95 96
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'normalize')
97 98
    if len(x.shape) == 1 and axis != 0 and axis != -1:
        raise ValueError(
99 100
            "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}"
            .format(axis))
101 102 103 104 105 106 107 108 109

    attrs = {
        'axis': axis,
        'porder': float(p),
        'keepdim': True,
        'epsilon': epsilon,
    }
    helper = LayerHelper('p_norm', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
110 111 112 113
    helper.append_op(type='p_norm',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
114
    eps = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
115
    eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
116
    return paddle.divide(x, paddle.maximum(out, eps), name=name)
117 118 119 120 121 122 123 124 125 126 127


def batch_norm(x,
               running_mean,
               running_var,
               weight,
               bias,
               training=False,
               momentum=0.9,
               epsilon=1e-05,
               data_format="NCHW",
C
ceci3 已提交
128
               use_global_stats=None,
129 130 131 132
               name=None):
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
133
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
134

135 136 137 138 139
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
140
        bias(Tensor): The bias tensor of batch_norm can not be None.
141 142 143
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Defalut False.
F
Feiyu Chan 已提交
144
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Defalut "NCHW".
C
ceci3 已提交
145
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          x = np.random.seed(123)
          x = np.random.random(size=(2, 1, 2, 3)).astype('float32')
          running_mean = np.random.random(size=1).astype('float32')
          running_variance = np.random.random(size=1).astype('float32')
          weight_data = np.random.random(size=1).astype('float32')
          bias_data = np.random.random(size=1).astype('float32')
          x = paddle.to_tensor(x)
          rm = paddle.to_tensor(running_mean)
          rv = paddle.to_tensor(running_variance)
          w = paddle.to_tensor(weight_data)
          b = paddle.to_tensor(bias_data)
          batch_norm_out = paddle.nn.functional.batch_norm(x, rm, rv, w, b)
Z
zhang wenhui 已提交
169
          print(batch_norm_out)
170 171 172 173 174 175 176
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
177
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
178 179
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
180 181
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))
182

F
Feiyu Chan 已提交
183
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
184

C
ceci3 已提交
185 186 187 188 189 190
    if use_global_stats == None:
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

191 192 193 194 195 196
    if in_dygraph_mode():
        batch_norm_out, _, _, _, _, _ = _C_ops.final_state_batch_norm(
            x, weight, bias, running_mean, running_var, momentum, epsilon,
            data_format, not training, use_global_stats, trainable_statistics,
            False)

197 198
        return dygraph_utils._append_activation_in_dygraph(batch_norm_out,
                                                           act=None)
199 200 201 202 203 204 205 206 207 208 209

    elif _in_legacy_dygraph():
        # for dygraph need tuple
        attrs = ("momentum", momentum, "epsilon", epsilon, "is_test",
                 not training, "data_layout", data_format, "use_mkldnn", False,
                 "fuse_with_relu", False, "use_global_stats", use_global_stats,
                 "trainable_statistics", trainable_statistics)

        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
            x, weight, bias, running_mean, running_var, None, mean_out,
            variance_out, *attrs)
H
hong 已提交
210

211 212
        return dygraph_utils._append_activation_in_dygraph(batch_norm_out,
                                                           act=None)
213 214 215 216 217 218 219 220

    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'BatchNorm')

    # for static need dict
    attrs = {
        "momentum": momentum,
        "epsilon": epsilon,
221
        "is_test": not training,
222 223 224 225
        "data_layout": data_format,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
C
ceci3 已提交
226
        "trainable_statistics": trainable_statistics,
227 228 229 230 231 232 233 234 235 236 237 238
    }

    inputs = {
        "X": [x],
        "Scale": [weight],
        "Bias": [bias],
        "Mean": [running_mean],
        "Variance": [running_var]
    }

    helper = LayerHelper('batch_norm', **locals())

239
    param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
240 241
    saved_mean = helper.create_variable_for_type_inference(dtype=param_dtype,
                                                           stop_gradient=True)
242
    saved_variance = helper.create_variable_for_type_inference(
243 244
        dtype=param_dtype, stop_gradient=True)
    batch_norm_out = helper.create_variable_for_type_inference(x.dtype)
245 246 247 248 249 250

    outputs = {
        "Y": [batch_norm_out],
        "MeanOut": [running_mean],
        "VarianceOut": [running_var],
        "SavedMean": [saved_mean],
251
        "SavedVariance": [saved_variance]
252 253
    }

254 255 256 257 258 259
    if training or trainable_statistics:
        # reserve_space is only used for training.
        reserve_space = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True)
        outputs["ReserveSpace"] = [reserve_space]

260 261 262 263
    helper.append_op(type="batch_norm",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
264 265 266 267 268 269 270 271 272 273 274 275

    return helper.append_activation(batch_norm_out)


def layer_norm(x,
               normalized_shape,
               weight=None,
               bias=None,
               epsilon=1e-05,
               name=None):
    """
    see more detail in paddle.nn.LayerNorm
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
301
          x = paddle.to_tensor(x_data)
C
Chen Long 已提交
302
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
303
          print(layer_norm_out)
304 305 306
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
307 308 309 310 311 312 313 314
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
            "`normalized_shape` should be int, list of ints or tuple of ints.")

315 316 317 318 319 320 321
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
    if input_ndim < normalized_ndim or input_shape[
            begin_norm_axis:] != normalized_shape:
        str_normalized_shape = str(normalized_shape)
        raise ValueError('Given normalized_shape is ' + str_normalized_shape +
                         ', expected input with shape [*, ' +
322 323
                         str_normalized_shape[1:] + ', but got input shape ' +
                         str(input_shape))
324

H
hong 已提交
325 326 327 328 329 330 331
    if in_dygraph_mode():
        pre_act, _, _, = _C_ops.final_state_layer_norm(x, weight, bias, epsilon,
                                                       begin_norm_axis, False)

        return dygraph_utils._append_activation_in_dygraph(pre_act, act=None)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
332 333
        pre_act, _, _ = _C_ops.layer_norm(x, weight, bias, 'epsilon', epsilon,
                                          'begin_norm_axis', begin_norm_axis)
334 335
        return dygraph_utils._append_activation_in_dygraph(pre_act, act=None)

F
furnace 已提交
336 337
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'LayerNorm')
338 339 340 341 342 343 344 345 346 347 348

    inputs = dict()
    inputs['X'] = [x]
    if weight:
        inputs['Scale'] = [weight]
    if bias:
        inputs['Bias'] = [bias]
    attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

    # create output
    helper = LayerHelper('layer_norm', **locals())
F
furnace 已提交
349 350

    dtype = x.dtype
351 352 353 354
    mean_out = helper.create_variable_for_type_inference(dtype=dtype,
                                                         stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(dtype=dtype,
                                                             stop_gradient=True)
F
furnace 已提交
355
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
356

357 358 359 360 361 362 363 364 365 366 367
    helper.append_op(type="layer_norm",
                     inputs=inputs,
                     outputs={
                         "Y": layer_norm_out,
                         "Mean": mean_out,
                         "Variance": variance_out,
                     },
                     attrs={
                         "epsilon": epsilon,
                         "begin_norm_axis": begin_norm_axis
                     })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

    return helper.append_activation(layer_norm_out)


def instance_norm(x,
                  running_mean=None,
                  running_var=None,
                  weight=None,
                  bias=None,
                  use_input_stats=True,
                  momentum=0.9,
                  eps=1e-05,
                  data_format="NCHW",
                  name=None):
    """
C
cnn 已提交
383
    See more detail in nn.layer.InstanceNorm2D.
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        running_mean(Tensor): running mean. Default None.
        running_var(Tensor): running variance. Default None.
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        use_input_stats(bool): Default True.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
409
          x = paddle.to_tensor(x_data)
C
Chen Long 已提交
410
          instance_norm_out = paddle.nn.functional.instance_norm(x)
411

Z
zhang wenhui 已提交
412
          print(instance_norm_out)
413 414

    """
415
    if in_dygraph_mode():
416
        out = _C_ops.final_state_instance_norm(x, weight, bias, eps)
417 418
        return out
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
419 420 421
        out, _, _ = _C_ops.instance_norm(x, weight, bias, "epsilon", eps,
                                         "momentum", momentum, "data_format",
                                         data_format)
422 423 424 425 426 427 428 429 430 431 432 433
        return out

    check_variable_and_dtype(x, 'input', ['float32', 'float64'], "InstanceNorm")

    attrs = {"epsilon": eps, "momentum": momentum, "data_format": data_format}

    if weight and bias:
        inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
    else:
        inputs = {"X": [x]}

    helper = LayerHelper('instance_norm', **locals())
434 435
    saved_mean = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                           stop_gradient=True)
436 437 438 439 440 441 442 443 444 445
    saved_variance = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    instance_norm_out = helper.create_variable_for_type_inference(x.dtype)

    outputs = {
        "Y": [instance_norm_out],
        "SavedMean": [saved_mean],
        "SavedVariance": [saved_variance]
    }

446 447 448 449
    helper.append_op(type="instance_norm",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
450
    return instance_norm_out
451 452 453 454 455 456 457 458 459


def local_response_norm(x,
                        size,
                        alpha=1e-4,
                        beta=0.75,
                        k=1.,
                        data_format="NCHW",
                        name=None):
460
    r"""
461 462 463 464 465 466 467
        Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
        For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

        The formula is as follows:

        .. math::

468
            Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

        In the above equation:

        - :math:`size` : The number of channels to sum over.
        - :math:`k` : The offset (avoid being divided by 0).
        - :math:`\\alpha` : The scaling parameter.
        - :math:`\\beta` : The exponent parameter.


        Args:
            x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
            size (int): The number of channels to sum over.
            alpha (float, optional): The scaling parameter, positive. Default:1e-4
            beta (float, optional): The exponent, positive. Default:0.75
            k (float, optional): An offset, positive. Default: 1.0
            data_format (str, optional): Specify the data format of the input, and the data format of the output
                will be consistent with that of the input. An optional string from:
                If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
                the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
                If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
                If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
            name (str, optional): Name for the operation (optional, default is None). For more information,
                please refer to :ref:`api_guide_Name`.

        Returns:
            A tensor storing the transformation result with the same shape and data type as input.


        Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
            y = paddle.nn.functional.local_response_norm(x, size=5)
            print(y.shape)  # [3, 3, 112, 112]
        """
Z
zhiboniu 已提交
509
    if not in_dynamic_mode():
510 511 512 513 514 515 516 517 518 519 520 521 522
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
            "but got {}".format(data_format))

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
            'Expected 3D or higher dimensionality input, but got {} dimensions'.
            format(dim))

H
huangjun12 已提交
523
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
524
        if not sz > 0 and i > 0:
H
huangjun12 已提交
525
            raise ValueError("Expected every dim's size to be larger than 0, "
526 527
                             "but the size of the {}-th dim is {}".format(
                                 i, sz))
H
huangjun12 已提交
528

529 530
    channel_last = True if data_format[-1] == "C" else False

531 532 533
    from functools import reduce
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

534 535 536 537
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
538 539 540 541
        reshape_shape = [
            sizes[0], 1, sizes[1], sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2]))
        ]
542 543 544 545 546
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
547
        reshape_shape = [
548 549
            sizes[0], 1, sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])), sizes[-1]
550
        ]
551 552 553 554 555
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
556 557 558
        div = paddle.nn.functional.avg_pool2d(div,
                                              kernel_size=pool2d_shape,
                                              stride=1)
559 560 561 562 563 564
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
        div = paddle.nn.functional.pad(div,
                                       pad=pad5d_shape,
                                       data_format='NCDHW')
565 566 567
        div = paddle.nn.functional.avg_pool3d(div,
                                              kernel_size=pool3d_shape,
                                              stride=1)
568 569 570 571 572 573
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res