googlenet.py 6.5 KB
Newer Older
D
dangqingqing 已提交
1 2 3
#!/usr/bin/env python
from paddle.trainer_config_helpers import *

4 5
height = 224
width = 224
D
dangqingqing 已提交
6
num_class = 1000
7
batch_size = get_config_arg('batch_size', int, 128)
8
use_gpu = get_config_arg('use_gpu', bool, True)
D
dangqingqing 已提交
9

10 11 12
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
    "train.list", None, module="provider", obj="process", args=args)
D
dangqingqing 已提交
13 14

settings(
15 16 17 18
    batch_size=batch_size,
    learning_rate=0.01 / batch_size,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * batch_size))
D
dangqingqing 已提交
19

20 21
conv_projection = conv_projection if use_gpu else img_conv_layer

D
dangqingqing 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35
def inception2(name, input, channels, \
    filter1,
    filter3R, filter3,
    filter5R, filter5,
    proj):

    conv1 = name + '_1'
    conv3r = name + '_3r'
    conv3 = name + '_3'
    conv5r = name + '_5r'
    conv5 = name + '_5'
    maxpool = name + '_max'
    convproj = name + '_proj'

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    cov1 = img_conv_layer(
        name=conv1,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter1,
        stride=1,
        padding=0)

    cov3r = img_conv_layer(
        name=conv3r,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter3R,
        stride=1,
        padding=0)
    cov3 = img_conv_layer(
        name=conv3,
        input=cov3r,
        filter_size=3,
        num_filters=filter3,
        stride=1,
        padding=1)

    cov5r = img_conv_layer(
        name=conv5r,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter5R,
        stride=1,
        padding=0)
    cov5 = img_conv_layer(
        name=conv5,
        input=cov5r,
        filter_size=5,
        num_filters=filter5,
        stride=1,
        padding=2)

    pool1 = img_pool_layer(
        name=maxpool,
        input=input,
        pool_size=3,
        num_channels=channels,
        stride=1,
        padding=1)
    covprj = img_conv_layer(
        name=convproj,
        input=pool1,
        filter_size=1,
        num_filters=proj,
        stride=1,
        padding=0)
D
dangqingqing 已提交
91 92 93 94 95 96 97 98 99 100

    cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj])
    return cat

def inception(name, input, channels, \
    filter1,
    filter3R, filter3,
    filter5R, filter5,
    proj):

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    cov1 = conv_projection(
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter1,
        stride=1,
        padding=0)

    cov3r = img_conv_layer(
        name=name + '_3r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter3R,
        stride=1,
        padding=0)
    cov3 = conv_projection(
        input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)

    cov5r = img_conv_layer(
        name=name + '_5r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter5R,
        stride=1,
        padding=0)
    cov5 = conv_projection(
        input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)

    pool1 = img_pool_layer(
        name=name + '_max',
        input=input,
        pool_size=3,
        num_channels=channels,
        stride=1,
        padding=1)
    covprj = conv_projection(
        input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)

    cat = concat_layer(
        name=name,
        input=[cov1, cov3, cov5, covprj],
144
        bias_attr=True if use_gpu else False,
145
        act=ReluActivation())
D
dangqingqing 已提交
146 147 148 149 150 151 152
    return cat


lab = data_layer(name="label", size=1000)
data = data_layer(name="input", size=3 * height * width)

# stage 1
153 154 155 156 157 158 159 160 161 162
conv1 = img_conv_layer(
    name="conv1",
    input=data,
    filter_size=7,
    num_channels=3,
    num_filters=64,
    stride=2,
    padding=3)
pool1 = img_pool_layer(
    name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
D
dangqingqing 已提交
163 164

# stage 2
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
conv2_1 = img_conv_layer(
    name="conv2_1",
    input=pool1,
    filter_size=1,
    num_filters=64,
    stride=1,
    padding=0)
conv2_2 = img_conv_layer(
    name="conv2_2",
    input=conv2_1,
    filter_size=3,
    num_filters=192,
    stride=1,
    padding=1)
pool2 = img_pool_layer(
    name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
D
dangqingqing 已提交
181 182

# stage 3
183 184 185 186
ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
pool3 = img_pool_layer(
    name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
D
dangqingqing 已提交
187 188

# stage 4
189 190
ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
D
dangqingqing 已提交
191
ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
192 193 194 195
ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
pool4 = img_pool_layer(
    name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
D
dangqingqing 已提交
196 197

# stage 5
198
ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
D
dangqingqing 已提交
199
ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
200 201 202 203 204 205 206
pool5 = img_pool_layer(
    name="pool5",
    input=ince5b,
    num_channels=1024,
    pool_size=7,
    stride=7,
    pool_type=AvgPooling())
D
dangqingqing 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

# We remove loss1 and loss2 for all system when testing benchmark
# output 1
# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling())
# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0)
# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
# out1 = fc_layer(name="output1", input=fc_o1,  size=1000, act=SoftmaxActivation())
# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3) 

# output 2
#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling())
#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0)
#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation())
#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3) 

# output 3
dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4)
225 226 227
out3 = fc_layer(
    name="output3", input=dropout, size=1000, act=SoftmaxActivation())
loss3 = cross_entropy(name='loss3', input=out3, label=lab)
D
dangqingqing 已提交
228 229

outputs(loss3)