test_imperative_auto_prune.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
import numpy as np


class AutoPruneLayer0(fluid.Layer):
    def __init__(self, name_scope):
        super(AutoPruneLayer0, self).__init__(name_scope)
        self.fc1 = fluid.dygraph.FC(
            "FC_1",
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)
        self.fc2 = fluid.dygraph.FC(
            "FC_2",
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)

    def forward(self, x, y):
        a = self.fc1(x)
        b = self.fc2(y)
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer1(fluid.Layer):
    def __init__(self, name_scope):
        super(AutoPruneLayer1, self).__init__(name_scope)
        self.fc1 = fluid.dygraph.FC(
            "FC_1",
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)
        self.fc2 = fluid.dygraph.FC(
            "FC_2",
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)

    def forward(self, x, y):
        a = self.fc1(x)
        b = self.fc2(y)
        b.stop_gradient = True
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer2(fluid.Layer):
    def __init__(self, name_scope):
        super(AutoPruneLayer2, self).__init__(name_scope)
        self.fc = fluid.dygraph.FC("FC1", size=10, act=None)
        self.fc2 = fluid.dygraph.FC("FC2", size=1, act=None)

    def forward(self, x, label):
        feature = self.fc(x)
        label = self.fc2(label)
        label = fluid.layers.cast(label, dtype="float32")
        label = fluid.layers.cast(label, dtype='int64')
        # Note that the label is not persistable in fluid.layers.cross_entropy.
        loss = fluid.layers.cross_entropy(input=feature, label=label)
        loss = fluid.layers.mean(loss)
        return loss


class AutoPruneLayer3(fluid.Layer):
    def __init__(self, name_scope):
        super(AutoPruneLayer3, self).__init__(name_scope)
        self.fc = fluid.dygraph.FC("FC1", size=20, act=None)

    def forward(self, x, label, test_num):
        feature = self.fc(x)
        part1, part2 = fluid.layers.split(
            feature, num_or_sections=[10, 10], dim=1)
        # Note that: part2 is not used.
        loss = fluid.layers.cross_entropy(input=part1, label=label)
        loss = fluid.layers.mean(loss)
        if test_num == 1:
            return loss, part2
        else:
            return loss, part1, part2


class MyLayer(fluid.Layer):
    def __init__(self, name_scope, vocab_size, size, dtype="float32"):
        super(MyLayer, self).__init__(name_scope, dtype)
        self.embed0 = fluid.Embedding(self.full_name(), size=(vocab_size, size))
        self.embed1 = fluid.Embedding(self.full_name(), size=(vocab_size, size))
        self.fc0 = fluid.FC(self.full_name(), size=size, dtype=dtype)
        self.fc1 = fluid.FC(self.full_name(), size=size, dtype=dtype)

    def forward(self, x):
        # this method involves only the fc layers
        loss = fluid.layers.reduce_mean(self.fc0(x) + self.fc1(x))
        return loss

    def linear0(self, x):
        loss = fluid.layers.reduce_mean(self.fc0(x))
        return loss

    def embed_linear0(self, x):
        loss = fluid.layers.reduce_mean(self.fc0(self.embed0(x)))
        return loss


class MyLayer2(fluid.Layer):
    def __init__(self, name_scope, vocab_size, size, dtype="float32"):
        super(MyLayer2, self).__init__(name_scope, dtype)
        self.embed0 = fluid.Embedding(self.full_name(), size=(vocab_size, size))
        self.embed1 = fluid.Embedding(self.full_name(), size=(vocab_size, size))
        self.fc0 = fluid.FC(self.full_name(), size=size, dtype=dtype)
        self.fc1 = fluid.FC(self.full_name(), size=size, dtype=dtype)

    def forward(self, indices):
        # mind the difference with MyLayer
        # In this example, the forward method involes all params
        loss = fluid.layers.reduce_mean(
            self.fc0(self.embed0(indices)) + self.fc1(self.embed1(indices)))
        return loss

    def linear0(self, x):
        loss = fluid.layers.reduce_mean(self.fc0(x))
        return loss

    def embed_linear0(self, x):
        loss = fluid.layers.reduce_mean(self.fc0(self.embed0(x)))
        return loss


class TestImperativeAutoPrune(unittest.TestCase):
    def test_auto_prune(self):
        with fluid.dygraph.guard():
            case1 = AutoPruneLayer0("l1")
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case1(v1, v2)
            loss.backward()
            self.assertTrue(case1.fc2._w._ivar._grad_ivar() is not None)
            self.assertTrue(case1.fc1._w._ivar._grad_ivar() is not None)

    def test_auto_prune2(self):
        with fluid.dygraph.guard():
            case2 = AutoPruneLayer1("l1")
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case2(v1, v2)
            loss.backward()
            self.assertTrue(case2.fc2._w._ivar._grad_ivar() is None)
            self.assertTrue(case2.fc1._w._ivar._grad_ivar() is not None)

    def test_auto_prune3(self):
        with fluid.dygraph.guard():
            case3 = AutoPruneLayer3("l3")
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case3(v1, v2, 1)
            loss.backward()
            self.assertTrue(case3.fc._w._ivar._grad_ivar() is not None)
            self.assertTrue((part2.gradient() == 0).all())

    def test_auto_prune4(self):
        with fluid.dygraph.guard():
            case4 = AutoPruneLayer3("l3")
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case4(v1, v2, 1)
            part2.backward()
            self.assertTrue(case4.fc._w._ivar._grad_ivar() is not None)
            self.assertTrue((part2.gradient() == 1).all())

    def test_auto_prune5(self):
        with fluid.dygraph.guard():
            case4 = AutoPruneLayer3("l3")
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part1, part2 = case4(v1, v2, 2)
            part1.backward()
            self.assertTrue(case4.fc._w._ivar._grad_ivar() is not None)
            self.assertTrue((part2.gradient() == 0).all())

    def test_auto_prune6(self):
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
            fc = fluid.FC("fc1", size=5, dtype="float32")
            fc2 = fluid.FC("fc2", size=3, dtype="float32")
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
            out1 = fc(a)
            out2 = fc2(b)
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
            out.backward()
            self.assertTrue((fc._w.gradient() == 0).all())
            self.assertTrue((out1.gradient() == 0).all())

    def test_auto_prune7(self):
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
            fc = fluid.FC("fc1", size=5, dtype="float32")
            fc2 = fluid.FC("fc2", size=3, dtype="float32")
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
            out1 = fc(a)
            out2 = fc2(b)
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            out.backward(backward_strategy)
            self.assertTrue((fc._w.gradient() == 0).all())
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            self.assertTrue((out1.gradient() == 0).all())

    def test_auto_prune8(self):
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
            fc = fluid.FC("fc1", size=5, dtype="float32")
            fc2 = fluid.FC("fc2", size=3, dtype="float32")
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
            out1 = fc(a)
            fc_origin = fc._w.numpy()
            out2 = fc2(out1)
            fc2_origin = fc2._w.numpy()
            fc2._w.stop_gradient = True
            out2.backward()
            optimizer = fluid.optimizer.SGD(learning_rate=0.003)
            optimizer.minimize(out2)
            self.assertTrue(np.array_equal(fc2_origin, fc2._w.numpy()))
            self.assertFalse(np.array_equal(fc_origin, fc._w.numpy()))

    def test_auto_prune9(self):
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
            fc = fluid.FC("fc1", size=5, dtype="float32")
            fc2 = fluid.FC("fc2", size=3, dtype="float32")
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
            out1 = fc(a)
            fc_origin = fc._w.numpy()
            out2 = fc2(out1)
            fc2_origin = fc2._w.numpy()
            out2.stop_gradient = True
            out2.backward()
            optimizer = fluid.optimizer.SGD(learning_rate=0.003)
            optimizer.minimize(out2)
            self.assertTrue(np.array_equal(fc2_origin, fc2._w.numpy()))
            self.assertTrue(np.array_equal(fc_origin, fc._w.numpy()))
            try:
                fc2._w.gradient()
            except ValueError as e:
                assert type(e) == ValueError

    def test_auto_prune10(self):
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
            fc = fluid.FC("fc1", size=5, dtype="float32")
            fc2 = fluid.FC("fc2", size=3, dtype="float32")
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
            out1 = fc(a)
            out2 = fc2(b)
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out.backward(backward_strategy)
            self.assertTrue((fc._w.gradient() == 0).all())
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            self.assertTrue((out1.gradient() == 0).all())

    def test_auto_prune_with_optimizer(self):
        vocab_size = 100
        size = 20
        batch_size = 16

        indices = np.random.randint(
            low=0, high=100, size=(batch_size, 1)).astype("int64")
        embed = np.random.randn(batch_size, size).astype("float32")

        place = fluid.CPUPlace()
        with fluid.dygraph.guard(place):
            model = MyLayer("mylayer", vocab_size, size)
            optimizer = fluid.optimizer.AdamOptimizer(0.001)
            grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.001)

            indices = fluid.dygraph.to_variable(indices)
            emebd = fluid.dygraph.to_variable(embed)
            dummy_loss = model(embed)

            loss = model.embed_linear0(indices)
            loss.backward()
            _, params_grads = optimizer.minimize(loss, grad_clip=grad_clip)
            for items in params_grads:
                assert items[0].name is not model.embed1._w.name
                assert items[0].name is not model.fc1._w.name
            assert model.embed1._w._ivar._grad_ivar() is None
            assert model.fc1._w._ivar._grad_ivar() is None

        with fluid.dygraph.guard(place):
            model = MyLayer2("mylayer", vocab_size, size)
            optimizer = fluid.optimizer.AdamOptimizer(0.001)
            grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.001)

            indices = fluid.dygraph.to_variable(indices)
            emebd = fluid.dygraph.to_variable(embed)
            dummy_loss = model(indices)

            loss = model.embed_linear0(indices)
            loss.backward()
            optimizer.minimize(loss, grad_clip=grad_clip)
            for items in params_grads:
                assert items[0].name is not model.embed1._w.name
                assert items[0].name is not model.fc1._w.name
            assert model.embed1._w._ivar._grad_ivar() is None
            assert model.fc1._w._ivar._grad_ivar() is None

    def test_case2_prune_no_grad_branch(self):
        with fluid.dygraph.guard():
            value1 = np.arange(784).reshape(1, 784)
            value2 = np.arange(1).reshape(1, 1)
            v1 = fluid.dygraph.to_variable(value1).astype("float32")
            v2 = fluid.dygraph.to_variable(value2).astype("float32")
            case3 = AutoPruneLayer2("l2")
            loss = case3(v1, v2)
            loss.backward()
            self.assertTrue(case3.fc2._w._ivar._grad_ivar() is None)
            self.assertTrue(case3.fc._w._ivar._grad_ivar() is not None)

    def test_case2_prune_no_grad_branch(self):
        with fluid.dygraph.guard():
            value1 = np.arange(784).reshape(1, 784)
            value2 = np.arange(1).reshape(1, 1)
            v1 = fluid.dygraph.to_variable(value1).astype("float32")
            v2 = fluid.dygraph.to_variable(value2).astype("float32")
            case3 = AutoPruneLayer2("l2")
            loss = case3(v1, v2)
            loss.backward()
            self.assertTrue(case3.fc2._w._ivar._grad_ivar() is None)
            self.assertTrue(case3.fc._w._ivar._grad_ivar() is not None)

    def test_case3_prune_no_grad_branch2(self):
        with fluid.dygraph.guard():
            value1 = np.arange(1).reshape(1, 1)
            fc = fluid.dygraph.FC("FC1", size=1, act=None)
            label = fluid.dygraph.to_variable(value1).astype("float32")
            label = fc(label)
            label = fluid.layers.cast(label, dtype="float32")
            label = fluid.layers.cast(label, dtype='int64')
            out = fluid.layers.one_hot(input=label, depth=100)
            loss = fluid.layers.mean(out)
            loss.backward()
            self.assertTrue(fc._w._ivar._grad_ivar() is None)

    def test_case4_with_no_grad_op_maker(self):
        with fluid.dygraph.guard():
            out = fluid.layers.gaussian_random(shape=[20, 30])
            loss = fluid.layers.mean(out)
            loss.backward()
            self.assertTrue(out._ivar._grad_ivar() is None)


if __name__ == '__main__':
    unittest.main()