ContextProjection.cpp 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ContextProjection.h"
Y
Yu Yang 已提交
16
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22

namespace paddle {

REGISTER_PROJECTION(context, ContextProjection);

ContextProjection::ContextProjection(const ProjectionConfig& config,
23 24
                                     ParameterPtr parameter,
                                     bool useGpu)
Z
zhangjinchao01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    : Projection(config, parameter, useGpu) {
  CHECK(config.has_context_start());
  CHECK(config.has_context_length());
  if (config.context_start() == 0 && config.context_length() == 1) {
    config_.set_trainable_padding(false);
  }
  if (config_.trainable_padding()) {
    CHECK(parameter);
    beginPad_ = std::max(0, -config.context_start());
    endPad_ = std::max(0, config.context_start() + config.context_length() - 1);
    size_t totalPad = beginPad_ + endPad_;
    size_t inputDim = parameter->getSize() / totalPad;
    CHECK_EQ(config.input_size(), inputDim);
    CHECK_EQ(inputDim * totalPad, parameter->getSize());
    weight_.reset(new Weight(totalPad, inputDim, parameter));
  }
41 42 43 44 45 46 47 48 49
  // init forward_ and backward_ functions
  init();
}

bool ContextProjection::init() {
  size_t context_length = config_.context_length();
  int context_start = config_.context_start();
  bool is_padding = config_.trainable_padding();
  size_t total_pad = is_padding ? beginPad_ + endPad_ : 0;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  createFunction(forward_,
                 "ContextProjectionForward",
                 FuncConfig()
                     .set("context_length", context_length)
                     .set("context_start", context_start)
                     .set("begin_pad", beginPad_)
                     .set("is_padding", is_padding));
  createFunction(backward_,
                 "ContextProjectionBackward",
                 FuncConfig()
                     .set("context_length", context_length)
                     .set("context_start", context_start)
                     .set("begin_pad", beginPad_)
                     .set("is_padding", is_padding)
                     .set("total_pad", total_pad));

67
  return true;
Z
zhangjinchao01 已提交
68 69 70 71 72 73
}

void ContextProjection::resetState() {
  CHECK_LE(config_.context_start() + config_.context_length(), 1)
      << "state is not allowed for future context";
  if (config_.context_start() >= 0) return;
74 75 76
  Matrix::resizeOrCreate(state_,
                         -config_.context_start(),
                         config_.input_size(),
Z
zhangjinchao01 已提交
77 78
                         false,  // trans
                         useGpu_);
79 80
  Matrix::resizeOrCreate(state2_,
                         -config_.context_start(),
Z
zhangjinchao01 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                         config_.input_size(),
                         false,  // trans
                         useGpu_);
  if (config_.trainable_padding()) {
    state_->assign(*weight_->getW()->subMatrix(0, -config_.context_start()));
  } else {
    state_->zeroMem();
  }
}

void ContextProjection::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1)
      << "one matrix is expected for ContextProjection state";
  state_->copyFrom(*(state->value[0]));
}

LayerStatePtr ContextProjection::getState() {
  if (state_ == nullptr) {
    return nullptr;
  }
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(state_->clone(0, 0, false));
  res->value[0]->copyFrom(*state_);
  return res;
}

void ContextProjection::forward() {
108
  CHECK(in_->value && out_->value);
Z
zhangjinchao01 已提交
109 110
  CHECK(in_->sequenceStartPositions);

111 112 113 114 115
  size_t input_dim = in_->value->getWidth();
  size_t dim = out_->value->getWidth();
  CHECK_EQ(dim, input_dim * config_.context_length());
  size_t batch_size = in_->value->getHeight();
  CHECK_EQ(batch_size, out_->value->getHeight());
Z
zhangjinchao01 已提交
116 117

  REGISTER_TIMER_INFO("ContextProjectionForward", getName().c_str());
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  bool is_padding = config_.trainable_padding();
  /// first use state_, otherwise use weight_(padding false === w nullptr)
  auto w_ptr =
      state_ ? state_.get() : is_padding ? weight_->getW().get() : nullptr;
  auto start_pos = in_->sequenceStartPositions;
  /// if use state_ as weight_, w_ptr already has mem, so padding true
  forward_[0]->init(FuncConfig()
                        .set("context_length", config_.context_length())
                        .set("context_start", config_.context_start())
                        .set("begin_pad", beginPad_)
                        .set("is_padding", state_ ? true : is_padding));
  forward_[0]->calc({Tensor(in_->value->getData(), Dims{batch_size, input_dim}),
                     Tensor(w_ptr ? w_ptr->getData() : nullptr,
                            Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
                     Tensor(reinterpret_cast<real*>(
                                const_cast<int*>(start_pos->getData(useGpu_))),
                            Dims{start_pos->getSize()})},
                    {Tensor(out_->value->getData(), Dims{batch_size, dim})},
                    {});
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

  if (state_ && config_.context_start() < 0) {
    CHECK_EQ(1, in_->getNumSequences());
    const int* starts = in_->sequenceStartPositions->getData(false);
    int length = starts[1] - starts[0];
    if (-config_.context_start() <= length) {
      MatrixPtr sub = in_->value->subMatrix(starts[1] + config_.context_start(),
                                            -config_.context_start());
      state_->copyFrom(*sub);
    } else {
      int prevLength = -config_.context_start() - length;
      state2_->subMatrix(0, prevLength)
          ->copyFrom(*state_->subMatrix(length, prevLength));
      state2_->subMatrix(prevLength, length)
          ->copyFrom(*in_->value->subMatrix(starts[0], length));
      std::swap(state_, state2_);
    }
  }
}

void ContextProjection::backward(const UpdateCallback& callback) {
158 159 160 161 162 163
  CHECK(in_->value && out_->value && out_->grad);
  size_t input_dim = in_->value->getWidth();
  size_t dim = out_->value->getWidth();
  CHECK_EQ(dim, input_dim * config_.context_length());
  size_t batch_size = in_->value->getHeight();
  CHECK_EQ(batch_size, out_->value->getHeight());
Z
zhangjinchao01 已提交
164 165

  REGISTER_TIMER_INFO("ContextProjectionBackward", getName().c_str());
166 167
  bool is_padding = config_.trainable_padding();
  auto start_pos = in_->sequenceStartPositions;
168 169 170 171 172 173 174 175 176 177
  auto w_ptr = is_padding ? weight_->getWGrad() : nullptr;
  backward_[0]->calc({Tensor(in_->grad ? in_->grad->getData() : nullptr,
                             Dims{batch_size, input_dim}),
                      Tensor(w_ptr ? w_ptr->getData() : nullptr,
                             Dims{w_ptr ? w_ptr->getHeight() : 0, input_dim}),
                      Tensor(reinterpret_cast<real*>(
                                 const_cast<int*>(start_pos->getData(useGpu_))),
                             Dims{start_pos->getSize()})},
                     {Tensor(out_->grad->getData(), Dims{batch_size, dim})},
                     {});
Z
zhangjinchao01 已提交
178 179 180 181 182 183 184

  if (config_.trainable_padding()) {
    weight_->getParameterPtr()->incUpdate(callback);
  }
}

}  // namespace paddle