operator.h 22.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
33
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/framework/selected_rows_utils.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
C
chentianyu03 已提交
41
#include "paddle/utils/flat_hash_map.h"
Q
Qiao Longfei 已提交
42

43
#include "paddle/pten/core/compat/arg_map_context.h"
44 45
#include "paddle/pten/core/kernel_context.h"
#include "paddle/pten/core/kernel_factory.h"
46

W
wanghuancoder 已提交
47 48 49 50 51 52 53 54 55
namespace paddle {
namespace framework {
class InferShapeContext;
class OpInfo;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

Q
Qiao Longfei 已提交
56 57
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
58 59 60
namespace paddle {
namespace framework {

61
/// If a variable is a empty variable, that name will be used.
62
constexpr char kEmptyVarName[] = "@EMPTY@";
63 64 65

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
66
constexpr char kTempVarName[] = "@TEMP@";
67 68

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
69 70
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
71
constexpr char kGradVarSuffix[] = "@GRAD";
72

M
minqiyang 已提交
73 74
constexpr size_t kGradVarSuffixSize = 5U;

75
/// Variables with this suffix are supposed to be filled up with zeros.
76
constexpr char kZeroVarSuffix[] = "@ZERO";
77

C
chengduo 已提交
78 79 80
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
81 82 83 84 85 86 87 88
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
89 90 91 92 93 94 95 96 97
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
98
// define some kernel priority
99
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
100 101
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

102
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
103 104 105 106 107
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
108 109
}

M
minqiyang 已提交
110
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
111
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
112 113 114 115 116
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
117 118
}

119
inline bool VarIsTensor(const Variable& var) {
120
  return var.IsType<LoDTensor>() || var.IsType<pten::SelectedRows>();
121 122
}

C
chengduo 已提交
123 124
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
125

126
class ExecutionContext;
W
wanghuancoder 已提交
127
class OperatorBase;
128

X
Xin Pan 已提交
129 130
class RuntimeContext {
 public:
X
Xin Pan 已提交
131 132
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
133

X
Xin Pan 已提交
134 135 136 137
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
138 139 140 141
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
142
/**
X
Xin Pan 已提交
143
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
144 145 146 147 148 149
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
150 151
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
152

Q
Qiao Longfei 已提交
153 154
  virtual ~OperatorBase() {}

155
  /// Executor will call this interface function to Run an op.
156 157
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
158

T
typhoonzero 已提交
159 160 161
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

162
  /// if scope is not null, also show dimensions of arguments
163
  virtual std::string DebugStringEx(const ScopeBase* scope) const;
164
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
165

166
  virtual bool SupportGPU() const { return false; }
B
Baibaifan 已提交
167
  virtual bool SupportNPU() const { return false; }
F
fwenguang 已提交
168
  virtual bool SupportMLU() const { return false; }
169

170 171
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
172
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
173 174
  template <typename T>
  inline const T& Attr(const std::string& name) const {
175 176 177
    PADDLE_ENFORCE_NE(
        attrs_.find(name), attrs_.end(),
        platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
178
    return BOOST_GET_CONST(T, attrs_.at(name));
179
  }
180 181 182 183 184 185 186 187
  void SetAttr(const std::string& name, const Attribute& v) {
    PADDLE_ENFORCE_EQ(
        HasAttr(name), true,
        platform::errors::NotFound(
            "The attribute %s is not found in operator %s", name, Type()));

    attrs_[name] = v;
  }
188
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
189

Y
Yu Yang 已提交
190 191
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
192

S
sneaxiy 已提交
193
  const OpInfo& Info() const {
194 195 196
    PADDLE_ENFORCE_NOT_NULL(
        info_, platform::errors::NotFound(
                   "OpInfo of operator (%s) is not found.", type_));
S
sneaxiy 已提交
197 198 199
    return *info_;
  }

200
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
201
  //! Get a input with argument's name described in `op_proto`
202
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
203
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
204
  const std::vector<std::string>& Inputs(const std::string& name) const;
205
  //! Get all inputs variable names
Q
qijun 已提交
206 207
  std::vector<std::string> InputVars() const;

208
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
209
  //! Get a output with argument's name described in `op_proto`
210
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
211 212
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
213
  const std::vector<std::string>& Outputs(const std::string& name) const;
214
  //! Get all outputs variable names
Y
Yu Yang 已提交
215
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
216

217
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
218

B
baojun-nervana 已提交
219
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
220 221
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
222

Z
Zhang Ting 已提交
223 224 225 226 227
  virtual platform::Place GetExecutionPlace(
      const platform::Place& place) const {
    return place;
  }

Q
qiaolongfei 已提交
228
 protected:
Q
Qiao Longfei 已提交
229
  std::string type_;
D
dongzhihong 已提交
230
  // NOTE: in case of OpGrad, inputs_ contains:
231
  // I (Inputs)
D
dongzhihong 已提交
232 233
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
234
  VariableNameMap inputs_;
Y
Yu Yang 已提交
235

D
dongzhihong 已提交
236 237
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
238
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
239
  AttributeMap attrs_;
S
sneaxiy 已提交
240 241 242 243

  // OpInfo
  const OpInfo* info_;

244 245
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
246 247 248 249

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
250 251
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
252 253
};

254
class ExecutionContext {
Y
Yan Chunwei 已提交
255
 public:
256
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
257
                   const platform::DeviceContext& device_context,
258 259
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
260
  virtual ~ExecutionContext() {}
261

H
hong 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
282 283 284

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
285
  template <typename T>
Y
Yu Yang 已提交
286
  inline const T& Attr(const std::string& name) const {
287
    return BOOST_GET_CONST(T, GetAttr(name));
Q
qiaolongfei 已提交
288 289
  }

H
hong 已提交
290 291 292
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
293

H
hong 已提交
294
  virtual bool HasInput(const std::string& name) const;
295

H
hong 已提交
296
  virtual bool HasOutput(const std::string& name) const;
297

H
hong 已提交
298
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
299
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
300 301
  }

H
hong 已提交
302
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
303
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
304 305
  }

H
hong 已提交
306
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
307

H
hong 已提交
308
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
309

H
hong 已提交
310
  virtual const std::vector<Variable*> MultiInputVar(
311
      const std::string& name) const {
312 313
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
314 315 316 317
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
318
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
319 320
  }

H
hong 已提交
321
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
322 323 324 325 326 327 328
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
329 330 331 332 333 334 335 336 337 338 339
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

340 341
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
342
    auto* var = InputVar(name);
343
    return var == nullptr ? nullptr : &var->Get<T>();
344 345 346 347
  }

  template <typename T>
  T* Output(const std::string& name) const {
348
    auto var = OutputVar(name);
349
    return var == nullptr ? nullptr : var->GetMutable<T>();
350 351 352 353
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
354 355
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
356 357
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
358 359 360 361 362
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
363
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
364 365 366 367 368 369 370
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
371 372 373
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
374 375
      return {};
    }
H
hong 已提交
376

X
Xin Pan 已提交
377 378 379 380 381 382
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
383

X
Xin Pan 已提交
384 385 386
    return res;
  }

387
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
388

Q
QI JUN 已提交
389 390 391 392 393
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

394
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
395
    return device_context_;
Q
qijun 已提交
396
  }
Q
qijun 已提交
397

398
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
QI JUN 已提交
399
  const inline platform::CUDADeviceContext& cuda_device_context() const {
400 401 402
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Current device context place is not GPUPlace."));
Q
QI JUN 已提交
403 404 405 406 407
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
408 409 410
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
411
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
412 413
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
414 415
    auto shared_allocation =
        std::shared_ptr<pten::Allocation>(allocation_ptr, deleter);
X
Xin Pan 已提交
416

417 418 419 420 421 422
    PADDLE_ENFORCE_GE(
        allocation_ptr->size(), framework::product(dim) * sizeof(T),
        platform::errors::PreconditionNotMet(
            "The data memory size(%d) is less than the tensor needed memory "
            "size(%d).",
            allocation_ptr->size(), framework::product(dim) * sizeof(T)));
X
Xin Pan 已提交
423 424 425 426 427 428 429 430

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
431 432 433
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
434
  const OperatorBase& GetOp() const { return op_; }
H
hong 已提交
435

436
 private:
437 438
  const OperatorBase& op_;
  const Scope& scope_;
439
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
440
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
441 442
};

443 444 445 446 447 448 449 450 451 452 453 454 455 456
// TODO(chenweihang): split impl based OpProto or Dygraph if needed
class ExecutionArgumentMappingContext : public pten::ArgumentMappingContext {
 public:
  explicit ExecutionArgumentMappingContext(const ExecutionContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

457 458 459
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.GetAttr(name);
    return GetAttrValue(attr);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  }

  size_t InputSize(const std::string& name) const override {
    return ctx_.InputSize(name);
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.OutputSize(name);
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    return ctx_.InputVar(name)->IsType<framework::Tensor>() ||
           ctx_.InputVar(name)->IsType<framework::LoDTensor>();
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
476
    return ctx_.InputVar(name)->IsType<pten::SelectedRows>();
477 478 479 480 481 482
  }

 private:
  const ExecutionContext& ctx_;
};

483 484 485 486 487 488 489 490
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
491
class OpKernelBase {
Q
qijun 已提交
492
 public:
Q
qijun 已提交
493
  /**
494
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
495 496
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
497
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
498 499
   */

500
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
501

Y
Yu Yang 已提交
502 503 504 505 506 507 508
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
509 510
};

Y
Yu Yang 已提交
511 512
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
513
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
514
  using OpKernelMap =
Y
yuyang18 已提交
515
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
516

Y
Yu Yang 已提交
517 518
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
519 520
      : OperatorBase(type, inputs, outputs, attrs) {}

C
chentianyu03 已提交
521
  static paddle::flat_hash_map<std::string /* op_type */, OpKernelMap>&
Y
Yu Yang 已提交
522
  AllOpKernels() {
C
chentianyu03 已提交
523
    static paddle::flat_hash_map<std::string, OpKernelMap> g_all_op_kernels;
Y
Yu Yang 已提交
524
    return g_all_op_kernels;
Y
Yu Yang 已提交
525
  }
Y
Yan Chunwei 已提交
526

527
  bool SupportGPU() const override {
Y
Yu Yang 已提交
528 529 530 531 532
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
533
  }
B
Baibaifan 已提交
534 535 536 537 538 539 540
  bool SupportNPU() const override {
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_npu_place(kern_pair.first.place_);
                       });
  }
F
fwenguang 已提交
541 542 543 544 545 546 547
  bool SupportMLU() const override {
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_mlu_place(kern_pair.first.place_);
                       });
  }
548
  bool SupportsMKLDNN(proto::VarType::Type data_type) const;
549

550 551
  bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                       proto::VarType::Type data_type) const;
552

553
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
554

X
Xin Pan 已提交
555 556
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
557

558 559 560
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

561 562 563 564
  proto::VarType::Type IndicateOrPromoteVarDataTypes(
      const ExecutionContext& ctx, const std::string& name1,
      const std::string& name2) const;

565
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
566

567 568
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
569 570 571
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
572

573 574
  platform::Place GetExecutionPlace(
      const platform::Place& platform) const override {
Z
Zhang Ting 已提交
575 576 577
    return kernel_type_->place_;
  }

578 579 580 581 582 583 584 585 586 587 588
  /* member functions for adapting to pten lib */
  /** In the Tensor calculation library, the new Kernel adopts a clearer and
    * more streamlined design. The arguments of the Kernel and the input and
    * output arguments registered in the original OpMaker do not match in some
    * cases, so we use map to record the arguments required by the kernel.
    * When selecting Kernel during Op execution, select the arguments of the
    * original Op according to the GetExpectedPtenKernelArgs returned arguments.
    */
  virtual KernelSignature GetExpectedPtenKernelArgs(
      const ExecutionContext& ctx) const;

589 590 591
  /* member functions for adapting to pten lib */
  void ChoosePtenKernel(const ExecutionContext& ctx) const;

592 593 594 595 596 597 598 599
  /**
   * Transfer data place for pten kernel
   * Is this really needed?
   */
  Scope* PreparePtenData(const Scope& scope, const pten::Kernel& pt_kernel,
                         const KernelSignature& pt_kernel_signature,
                         RuntimeContext* ctx) const;

600
  void BuildPtenKernelContext(const RuntimeContext& ctx,
601 602
                              platform::DeviceContext* dev_ctx,
                              pten::KernelContext* pt_kernel_context) const;
603

604 605
  void WriteBackToOutputs(RuntimeContext* ctx,
                          pten::KernelContext* pt_kernel_context) const;
606 607 608

  pten::Kernel* PtenKernel() const { return pt_kernel_.get(); }

609 610
  const OpKernelType* kernel_type() const { return kernel_type_.get(); }

Y
Yu Yang 已提交
611
 private:
612
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
613 614
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
615 616

  /**
T
tianshuo78520a 已提交
617 618
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
619 620 621 622
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
623 624 625 626
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
627 628 629 630

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
631

632 633 634
  OpKernelType InnerGetExpectedKernelType(const ExecutionContext& ctx) const;

  void ChooseKernel(const ExecutionContext& ctx) const;
L
Liu Yiqun 已提交
635

636 637 638
  void HandleComplexGradToRealGrad(const Scope& scope,
                                   RuntimeContext* ctx) const;

639 640 641 642 643
  /* Inner assist methods */
  // indicate kernel DataType by input data.
  // By default all input data must be same.
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
  // used for IndicateDataType
644 645 646
  void ParseInputDataType(const std::vector<Variable*>& vars,
                          const std::string& name,
                          proto::VarType::Type* data_type) const;
647 648 649 650
  // used for IndicateOrPromoteVarDataTypes
  Tensor* GetTensorFormInputSafely(const ExecutionContext& ctx,
                                   const std::string& name) const;

651
 protected:
L
Liu Yiqun 已提交
652 653
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
654 655
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
656
  mutable bool need_prepare_data_ = true;
657 658
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
659
  mutable std::mutex cache_update_mutex_;
660
  mutable bool enable_cache_transfer_scope_ = false;
661 662 663 664 665 666
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  mutable bool run_pten_kernel_ = false;
  mutable std::unique_ptr<KernelSignature> pt_kernel_signature_;
  mutable std::unique_ptr<pten::Kernel> pt_kernel_;
Q
Qiao Longfei 已提交
667 668
};

Y
Yu Yang 已提交
669 670
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
671 672
}  // namespace framework
}  // namespace paddle