parameter_prefetch.cc 11.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18
#include <set>
#include <string>
Q
Qiao Longfei 已提交
19
#include <unordered_map>
20
#include <unordered_set>
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
W
Wu Yi 已提交
29
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
30 31 32
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
C
chengmo 已提交
33
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
34 35 36 37 38

namespace paddle {
namespace operators {
namespace distributed {

39
using LoDTensor = framework::LoDTensor;
Q
Qiao Longfei 已提交
40 41 42 43
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

Q
Qiao Longfei 已提交
44
static void SplitIdsIntoMultipleVarsBySection(
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    const std::vector<int64_t> &in_ids,
    const std::vector<std::string> &in_varnames, const int tables,
    const int pservers, const bool is_distibuted, framework::Scope *scope,
    std::vector<std::vector<int64_t>> *splited_ids,
    std::vector<std::vector<int64_t>> *origin_ids) {
  PADDLE_ENFORCE_EQ(
      in_varnames.size(), tables,
      platform::errors::OutOfRange(
          "send varnames size: %d not equal table number: %d, internal error",
          in_varnames.size(), tables));

  PADDLE_ENFORCE_LE(
      tables, pservers,
      platform::errors::OutOfRange("table number %d not equal or less than "
                                   "pserver number: %d, internal error",
                                   tables, pservers));
Q
Qiao Longfei 已提交
61 62 63

  auto place = platform::CPUPlace();

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::set<int64_t> st(in_ids.begin(), in_ids.end());
  std::vector<int64_t> all_ids;
  all_ids.assign(st.begin(), st.end());

  splited_ids->resize(tables);
  origin_ids->resize(tables);

  if (is_distibuted) {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*splited_ids)[pserver_id].push_back(id);
      (*origin_ids)[pserver_id].push_back(id);
    }
  } else {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*origin_ids)[pserver_id].push_back(id);
      id = id / pservers;
      (*splited_ids)[pserver_id].push_back(id);
    }
  }

  for (size_t i = 0; i < in_varnames.size(); ++i) {
    auto *id_tensor =
        scope->Var(in_varnames[i])->GetMutable<framework::LoDTensor>();

    auto &ids = (*splited_ids)[i];
Q
Qiao Longfei 已提交
91
    if (!ids.empty()) {
92
      auto *id_tensor_data = id_tensor->mutable_data<int64_t>(
Q
Qiao Longfei 已提交
93 94 95 96 97 98
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

99
typedef std::vector<std::pair<std::string, std::string>> TableAndEndpoints;
Q
Qiao Longfei 已提交
100

101
void prefetch_core(
102 103 104 105 106 107 108 109 110 111 112
    const std::vector<int64_t> &ids, const TableAndEndpoints &tables,
    const framework::ExecutionContext &context, const framework::Scope &scope,
    const bool is_distributed,
    std::unordered_map<int64_t, std::vector<float>> *recved_vec_map) {
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  int pservers = context.Attr<int>("pserver_num");

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
C
Chengmo 已提交
113
  auto &actual_ctx = *pool.Get(platform::CPUPlace());
Q
Qiao Longfei 已提交
114

115 116 117 118 119 120 121
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < tables.size(); ++i) {
    in_var_names.push_back("prefetch_send@" + tables[i].second);
    out_var_names.push_back("prefetch_recv@" + tables[i].second);
Q
Qiao Longfei 已提交
122 123
  }

124 125 126 127 128
  std::vector<std::vector<int64_t>> split_ids;
  std::vector<std::vector<int64_t>> origin_ids;
  SplitIdsIntoMultipleVarsBySection(ids, in_var_names, tables.size(), pservers,
                                    is_distributed, local_scope.get(),
                                    &split_ids, &origin_ids);
129 130

  // create output var in local scope
131
  for (auto &name : out_var_names) {
132 133
    local_scope->Var(name)->GetMutable<framework::LoDTensor>();
  }
T
tangwei12 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(*local_scope.get(), in_var_names[i])) {
      VLOG(3) << "sending " << in_var_names[i] << " to " << tables[i].second
              << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
          tables[i].second, actual_ctx, *local_scope.get(), in_var_names[i],
          out_var_names[i], tables[i].first));
    } else {
      VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
148 149
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
Q
Qiao Longfei 已提交
150
  }
Q
Qiao Longfei 已提交
151

152 153
  for (size_t o_idx = 0; o_idx < out_var_names.size(); ++o_idx) {
    auto &ids_in_this_section = origin_ids[o_idx];
154

Q
Qiao Longfei 已提交
155
    if (!ids_in_this_section.empty()) {
156 157 158 159
      auto &prefetch_out_var =
          local_scope->Var(out_var_names[o_idx])->Get<framework::LoDTensor>();
      const auto *out_var_data = prefetch_out_var.data<float>();
      auto &dims = prefetch_out_var.dims();
Q
Qiao Longfei 已提交
160 161 162 163 164 165

      PADDLE_ENFORCE_EQ(dims.size(), 2, "");
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

      auto row_numel = dims[1];

166
      for (int64_t i = 0; i < dims[0]; ++i) {
167
        auto origin_id = ids_in_this_section[i];
168
        std::vector<float> vecs(row_numel);
C
Chengmo 已提交
169

170 171
        std::copy_n(out_var_data + i * row_numel, row_numel, vecs.begin());
        (*recved_vec_map)[origin_id] = vecs;
Q
Qiao Longfei 已提交
172
      }
Q
Qiao Longfei 已提交
173
    } else {
174
      VLOG(3) << "ids in this section is empty";
Q
Qiao Longfei 已提交
175 176 177 178
    }
  }
}

179 180 181 182 183 184 185 186 187
void prefetch(const std::string &id_name, const std::string &out_name,
              const std::string &persistable_var_name,
              const bool is_distributed,
              const std::vector<std::string> &table_names,
              const std::vector<std::string> &endpoints,
              const framework::ExecutionContext &context,
              const framework::Scope &scope) {
  prefetchs({id_name}, {out_name}, persistable_var_name, is_distributed,
            table_names, endpoints, context, scope);
188
}
Q
Qiao Longfei 已提交
189

190 191 192 193 194 195 196 197
void prefetchs(const std::vector<std::string> &id_var_names,
               const std::vector<std::string> &out_var_names,
               const std::string &persistable_var_name,
               const bool is_distributed,
               const std::vector<std::string> &table_names,
               const std::vector<std::string> &endpoints,
               const framework::ExecutionContext &context,
               const framework::Scope &scope) {
C
chengmo 已提交
198 199
  platform::RecordEvent record_event("Distributed_lookup_table::prefetchs",
                                     platform::EventRole::kInnerOp);
T
tangwei12 已提交
200
  auto vec_dim_1 = 0;
201 202 203 204 205 206 207 208 209
  auto vec_dim_0 = 0;
  framework::Variable *var = scope.FindVar(persistable_var_name);

  if (var->IsType<SelectedRows>()) {
    vec_dim_1 = var->Get<framework::SelectedRows>().value().dims()[1];
  } else {
    vec_dim_0 = var->Get<framework::LoDTensor>().dims()[0];
    vec_dim_1 = var->Get<framework::LoDTensor>().dims()[1];
  }
T
tangwei12 已提交
210 211 212 213

  PADDLE_ENFORCE_GT(vec_dim_1, 0,
                    platform::errors::InvalidArgument(
                        "lookup table var's dim must gather than 0"));
214 215 216 217

  const auto place =
      scope.FindVar(id_var_names[0])->Get<framework::LoDTensor>().place();

C
Chengmo 已提交
218
  std::vector<std::vector<int64_t>> ids_group;
219
  std::vector<int64_t> ids_union;
C
Chengmo 已提交
220
  std::vector<framework::LoD> ids_lods;
221 222
  TableAndEndpoints tables;

223
  for (auto &id_name : id_var_names) {
C
Chengmo 已提交
224 225 226 227 228 229
    auto &id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
    std::vector<int64_t> ids;
    TensorToVector(id_tensor, context.device_context(), &ids);
    ids_union.insert(ids_union.end(), ids.begin(), ids.end());
    ids_group.push_back(ids);
    ids_lods.push_back(id_tensor.lod());
Q
Qiao Longfei 已提交
230 231
  }

232 233
  std::unordered_set<int64_t> s(ids_union.begin(), ids_union.end());
  ids_union.assign(s.begin(), s.end());
Q
Qiao Longfei 已提交
234

235 236 237 238 239 240 241 242 243 244 245 246 247
  for (auto &i : ids_union) {
    PADDLE_ENFORCE_GE(
        i, 0, platform::errors::OutOfRange(
                  "each element in embedding should be larger or equal 0"));
    if (!is_distributed) {
      PADDLE_ENFORCE_LT(
          i, vec_dim_0,
          platform::errors::OutOfRange(
              "embedding id must in [0, %d) when is_distributed False",
              vec_dim_0));
    }
  }

248
  for (size_t i = 0; i < table_names.size(); i++) {
249
    tables.push_back(std::make_pair(table_names[i], endpoints[i]));
Q
Qiao Longfei 已提交
250 251
  }

252
  std::unordered_map<int64_t, std::vector<float>> recved_vec_map;
253
  prefetch_core(ids_union, tables, context, scope, is_distributed,
254 255 256 257 258 259
                &recved_vec_map);

  auto padding_idx = distributed::kNoPadding;

  if (context.HasAttr("padding_idx")) {
    padding_idx = context.Attr<int64_t>("padding_idx");
Q
Qiao Longfei 已提交
260
  }
Q
Qiao Longfei 已提交
261

262
  for (size_t i = 0; i < out_var_names.size(); i++) {
C
Chengmo 已提交
263 264
    std::vector<int64_t> ids = ids_group[i];
    auto ids_size = ids.size();
265 266
    auto *out_t =
        scope.FindVar(out_var_names[i])->GetMutable<framework::LoDTensor>();
C
Chengmo 已提交
267 268 269
    out_t->set_lod(ids_lods[i]);
    out_t->Resize(
        framework::make_ddim({static_cast<int64_t>(ids_size), vec_dim_1}));
270
    auto *out_d = out_t->mutable_data<float>(place);
271

C
Chengmo 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    if (platform::is_cpu_place(out_t->place())) {
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          memset(out_d + idx * vec_dim_1, 0, sizeof(float) * vec_dim_1);
        } else {
          std::copy_n(recved_vec_map[id].begin(), vec_dim_1,
                      out_d + idx * vec_dim_1);
        }
      }
    } else {
#ifdef PADDLE_WITH_CUDA
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        auto stream = context.cuda_device_context().stream();
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          platform::GpuMemsetAsync(out_d + idx * vec_dim_1, 0,
                                   sizeof(float) * vec_dim_1, stream);
        } else {
          auto &cpu_place =
              BOOST_GET_CONST(platform::CPUPlace,
                              paddle::platform::CPUDeviceContext().GetPlace());
          auto &gpu_place =
              BOOST_GET_CONST(platform::CUDAPlace, out_t->place());
          memory::Copy(gpu_place, out_d + idx * vec_dim_1, cpu_place,
                       &recved_vec_map[id][0], sizeof(float) * vec_dim_1,
                       stream);
        }
300
      }
C
Chengmo 已提交
301 302 303 304
#else
      PADDLE_ENFORCE(true, platform::errors::PermissionDenied(
                               "Paddle is not compiled with GPU!"));
#endif
305
    }
Q
Qiao Longfei 已提交
306 307 308 309 310 311
  }
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle