mul_compute_test.cc 4.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

T
tensor-tang 已提交
15
#include "paddle/fluid/lite/kernels/arm/mul_compute.h"
T
tensor-tang 已提交
16
#include <gtest/gtest.h>
T
tensor-tang 已提交
17 18
#include <algorithm>
#include <iostream>
T
tensor-tang 已提交
19
#include <memory>
T
tensor-tang 已提交
20
#include <random>
T
tensor-tang 已提交
21
#include <utility>
T
tensor-tang 已提交
22 23 24 25 26 27 28 29 30
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41
template <typename T>
void FillData(T* a, const int n, const T lower = static_cast<T>(-2.f),
              const T upper = static_cast<T>(2.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
42 43 44 45 46
TEST(mul_arm, retrive_op) {
  auto mul =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("mul");
  ASSERT_FALSE(mul.empty());
  ASSERT_TRUE(mul.front());
T
tensor-tang 已提交
47 48
}

T
tensor-tang 已提交
49
TEST(mul_arm, init) {
T
tensor-tang 已提交
50
  MulCompute mul;
T
tensor-tang 已提交
51 52
  ASSERT_EQ(mul.precision(), PRECISION(kFloat));
  ASSERT_EQ(mul.target(), TARGET(kARM));
T
tensor-tang 已提交
53 54
}

T
tensor-tang 已提交
55
TEST(mul_arm, compare_test) {
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  using T = float;

  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : {1, 2, 3, 4}) {
        lite::Tensor x, y, out, ref;
        x.Resize({m, k});
        y.Resize({k, n});
        out.Resize({m, n});
        ref.Resize({m, n});

        auto* x_data = x.mutable_data<T>();
        auto* y_data = y.mutable_data<T>();
        auto* out_data = out.mutable_data<T>();
        auto* ref_data = ref.mutable_data<T>();

        FillData<T>(x_data, x.dims().production());
        FillData<T>(y_data, y.dims().production());
        FillData<T>(out_data, out.dims().production());
        FillData<T>(ref_data, out.dims().production());

        MulCompute mul;
        operators::MulParam param;

        param.x = &x;
        param.y = &y;
        param.output = &out;

        DeviceInfo::Init();
        std::unique_ptr<KernelContext> ctx(new KernelContext);
        ctx->As<ARMContext>();
        mul.SetParam(param);
        mul.SetContext(std::move(ctx));
        mul.PrepareForRun();

        mul.Run();

        lite::arm::math::mul_compute_eigen(x_data, m, k, y_data, k, n,
                                           ref_data);
        for (int i = 0; i < out.dims().production(); i++) {
          EXPECT_NEAR(out_data[i], ref_data[i], 1e-3);
        }
      }
    }
T
tensor-tang 已提交
100
  }
T
tensor-tang 已提交
101 102 103 104
}

TEST(mul_arm, num_col_dims) {
  using T = float;
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108 109 110
  lite::Tensor x, y, out, ref;
  x.Resize({2, 3, 4});
  y.Resize({3, 4, 5});
  out.Resize({2, 5});
  ref.Resize({2, 5});
T
tensor-tang 已提交
111

T
tensor-tang 已提交
112 113 114 115
  auto* x_data = x.mutable_data<T>();
  auto* y_data = y.mutable_data<T>();
  auto* out_data = out.mutable_data<T>();
  auto* ref_data = ref.mutable_data<T>();
T
tensor-tang 已提交
116

T
tensor-tang 已提交
117 118 119 120 121 122 123 124 125 126
  FillData<T>(x_data, x.dims().production());
  FillData<T>(y_data, y.dims().production());
  FillData<T>(out_data, out.dims().production());
  FillData<T>(ref_data, out.dims().production());

  MulCompute mul;
  operators::MulParam param;

  param.x = &x;
  param.y = &y;
T
tensor-tang 已提交
127
  param.output = &out;
T
tensor-tang 已提交
128 129
  param.x_num_col_dims = 1;
  param.y_num_col_dims = 2;
T
tensor-tang 已提交
130 131 132 133

  DeviceInfo::Init();
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<ARMContext>();
T
tensor-tang 已提交
134 135
  mul.SetParam(param);
  mul.SetContext(std::move(ctx));
T
tensor-tang 已提交
136
  mul.PrepareForRun();
T
tensor-tang 已提交
137

T
tensor-tang 已提交
138
  mul.Run();
T
tensor-tang 已提交
139

T
tensor-tang 已提交
140 141 142
  lite::arm::math::mul_compute_eigen(x_data, 2, 12, y_data, 12, 5, ref_data);
  for (int i = 0; i < out.dims().production(); i++) {
    EXPECT_NEAR(out_data[i], ref_data[i], 1e-3);
T
tensor-tang 已提交
143 144 145 146 147 148 149 150
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
151
USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def);