optimizer.py 21.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Q
Qiao Longfei 已提交
38
    def __init__(self, learning_rate, global_step=None, regularization=None):
39 40 41
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
            raise ValueError("learning rate should be float or Variable")
42
        self._global_step = global_step
D
dzhwinter 已提交
43
        self.regularization = regularization
44 45 46 47
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
        self._learning_rate_map = defaultdict(lambda: None)
48 49 50 51 52
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
53
        self.helper = None
Q
Qiao Longfei 已提交
54

Q
Qiao Longfei 已提交
55
    def _create_global_learning_rate(self):
56
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
57

58 59 60 61 62 63 64
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
                raise ValueError(
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
65

66 67 68 69 70 71 72 73 74 75
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
76 77 78 79
        """
        get global decayed learning rate
        :return:
        """
80 81 82
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map[program]
Q
Qiao Longfei 已提交
83

Q
Qiao Longfei 已提交
84 85 86 87 88
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

89 90 91 92
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
93
        return self.global_learning_rate() * param_lr
94 95 96 97 98 99 100

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
101
        """
102 103
        pass

104 105 106 107 108 109 110 111 112 113 114 115 116
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
117
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
118 119 120 121 122 123 124 125 126 127 128
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
129
            raise Exception("Accumulator {} already exists for parameter {}".
130
                            format(name, param.name))
Q
Qiao Longfei 已提交
131 132 133

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
134
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
135
            persistable=True,
F
fengjiayi 已提交
136
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
137 138 139
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
140
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
141
        self._accumulators[name][param.name] = var
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
179 180 181
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
182
                                 startup_program=None):
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
190 191 192 193
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
194
          :param startup_program:
Q
Qiao Longfei 已提交
195
        """
196 197 198 199 200
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
201
        # for parameters and extend _finish_update method to add custom ops.
202 203

        # Create any accumulators
Q
Qiao Longfei 已提交
204
        program = loss.block.program
205
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
206 207
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
208 209 210
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
211
            self._create_global_learning_rate()
212 213 214 215 216 217 218 219 220 221 222

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
223
            self._finish_update(loss.block)
224 225

            if self._global_step is not None:
Y
Yancey1989 已提交
226 227 228
                self._increment_global_step(loss.block)
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
229

Q
Qiao Longfei 已提交
230 231
    def minimize(self,
                 loss,
232
                 startup_program=None,
Q
Qiao Longfei 已提交
233 234
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
235 236
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
237
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
238 239
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
240
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
241
                                       [error_clip_callback])
Y
Yu Yang 已提交
242 243 244

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
245
        # Add regularization if any
D
dzhwinter 已提交
246 247
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
248

Q
Qiao Longfei 已提交
249
        optimize_ops = self.create_optimization_pass(params_grads, loss,
250
                                                     startup_program)
T
typhoonzero 已提交
251
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
252 253 254 255 256 257


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
258
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
259
        assert learning_rate is not None
Q
Qiao Longfei 已提交
260 261
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
262 263
        self.type = "sgd"

264 265
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
266

Q
Qiao Longfei 已提交
267 268 269 270 271 272
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
273
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
274
            },
275
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
276 277

        return sgd_op
278 279 280 281 282 283 284


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
285
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
286 287
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
288 289
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
290 291
        self.type = "momentum"
        self._momentum = momentum
292
        self._use_nesterov = bool(use_nesterov)
293 294 295 296 297

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
298
            self._add_accumulator(self._velocity_acc_str, p)
299 300 301 302 303 304 305 306 307 308 309 310 311

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
312
                "LearningRate": self._create_param_lr(param_and_grad)
313 314 315 316 317
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
318
            attrs={"mu": self._momentum,
319
                   "use_nesterov": self._use_nesterov})
320 321

        return momentum_op
322 323 324 325 326 327 328


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
329
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
330 331
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
332 333
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
334 335 336 337 338 339 340
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
341
            self._add_accumulator(self._moment_acc_str, p)
342 343 344 345 346 347 348

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

349
        # Create the adagrad optimizer op
350 351 352 353 354 355
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
356
                "LearningRate": self._create_param_lr(param_and_grad)
357 358 359 360 361 362
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
363 364 365 366 367 368 369 370 371 372 373 374


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
375
                 epsilon=1e-8,
D
dzhwinter 已提交
376
                 **kwargs):
377 378 379 380
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
381 382
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
383 384 385 386 387 388 389 390
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
391
        main_block = block.program.global_block()
392 393
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
394
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
395
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
396 397 398 399 400
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
401
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
402 403

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
404
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
405 406 407 408 409 410
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
411
            self._beta2_pow_acc, initializer=Constant(self._beta2))
412 413 414

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
415 416
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
417 418 419 420 421 422 423 424

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
425
        # create the adam optimize op
426 427 428 429 430
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
431
                "LearningRate": self._create_param_lr(param_and_grad),
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
454 455
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
456 457 458 459 460
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
461
        scale_beta2 = main_block.append_op(
462 463 464 465 466 467
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
468 469 470 471 472 473 474 475 476 477 478 479


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
480
                 epsilon=1e-8,
D
dzhwinter 已提交
481
                 **kwargs):
482 483 484 485
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
486 487
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
488 489 490 491 492 493 494 495
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
496
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
497
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
498 499 500 501 502
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
503
            self._beta1_pow_acc, initializer=Constant(self._beta1))
504 505 506

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
507 508
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
509 510 511 512 513 514 515 516 517 518 519 520 521

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
522
                "LearningRate": self._create_param_lr(param_and_grad),
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
544 545
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
546 547 548 549 550 551
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
552 553 554 555 556 557 558


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
559
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
560 561 562 563
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
564 565
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer