tensor.py 63.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17

import numpy
18
import six
19
import warnings
20
from six.moves import reduce
21

Y
Yu Yang 已提交
22
from ..layer_helper import LayerHelper
23
from ..param_attr import ParamAttr
24
from ..initializer import Initializer
25
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
26
from ..framework import Variable
27
from ..initializer import Constant
28
from ..core import VarDesc
29
from .. import core
30
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
31
from . import utils
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from paddle.utils import deprecated
34

35
from .utils import check_shape
Y
Yu Yang 已提交
36 37

__all__ = [
L
li099 已提交
38 39 40
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
41
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
42
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
43 44 45
]


X
xuwei06 已提交
46
def create_tensor(dtype, name=None, persistable=False):
47
    """
W
wangchaochaohu 已提交
48
    Create a variable, which will hold a Tensor with data type dtype.
49 50

    Args:
W
wangchaochaohu 已提交
51 52 53 54
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
55
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
56
            default value is False.
57 58

    Returns:
W
wangchaochaohu 已提交
59
        Variable: The tensor to be created according to dtype.
60 61 62 63

    Examples:
        .. code-block:: python

64
          import paddle.fluid as fluid
65 66
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
67 68 69 70
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
83
	:api_attr: Static Graph
S
swtkiwi 已提交
84

85
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
86 87 88 89 90
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

91 92 93 94 95 96 97
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
98 99 100
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
101
        default_initializer (Initializer, optional): Initializer for the parameter
102 103

    Returns:
104
        The created parameter.
Y
yuyang18 已提交
105 106

    Examples:
107 108
        .. code-block:: python

109 110 111
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
112
    """
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
132
    helper = LayerHelper("create_parameter", **locals())
133
    if attr is None:
X
xuwei06 已提交
134
        attr = ParamAttr(name=name)
135 136
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
137 138 139
                                   default_initializer)


140 141 142 143 144 145 146
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
147
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
148

149 150 151
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
152
                      variable will be filled with it.
153 154
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
155
                           Default: False
156
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
157
                         Default: False
158 159
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
160 161

    Returns:
162
        Variable: The created Variable
F
fengjiayi 已提交
163 164 165 166

    Examples:
        .. code-block:: python

167 168 169
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
170
                                           persistable=True, force_cpu=True, name='new_var')
171
    """
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
189 190
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
191 192 193 194 195
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
196 197 198
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
199

Q
Qiao Longfei 已提交
200 201 202
    return var


203
def cast(x, dtype):
Y
Yu Yang 已提交
204
    """
S
swtkiwi 已提交
205

206 207 208
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211
        x(Tensor): An input N-D Tensor with data type bool, float16,
212 213
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle
223

224 225
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
226
    """
227 228
    check_variable_and_dtype(
        x, 'x',
229 230
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
231 232 233 234 235 236
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
237
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
238 239 240 241 242 243 244 245 246
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


247
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
248
    """
249
    This OP concatenates the input along the axis.
250 251

    Args:
252 253
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
254 255
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
256
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
257
            as ``axis+R``. Default is 0.
258 259 260
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
261 262

    Returns:
263
        Tensor: A Tensor with the same data type as ``input``.
264 265 266

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
267

268
            import paddle.fluid as fluid
269 270
            import numpy as np

271 272 273 274 275 276
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
277 278 279 280
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
281 282
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
283 284
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
285 286 287 288 289 290 291 292
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
293
    """
294 295

    if in_dygraph_mode():
S
songyouwei 已提交
296 297
        if isinstance(axis, Variable):
            axis = axis.numpy()
298
            axis = axis.item(0)
299
        return core.ops.concat(input, 'axis', axis)
300

301 302 303 304 305 306 307 308 309 310 311
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
312
        input = [input]
313
    check_type(axis, 'axis', (int, Variable), 'concat')
314

315 316 317 318 319
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

320
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
321
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
322 323

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
324 325 326 327
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

328
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
329
                "number of the elements must be 1, but received %s." % len(input)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
349 350 351
    return out


G
Guo Sheng 已提交
352
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
353
    r"""
G
Guo Sheng 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
404 405

    Args:
G
Guo Sheng 已提交
406 407 408 409 410 411 412
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
413 414

    Returns:
G
Guo Sheng 已提交
415 416 417
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
418 419 420 421

    Examples:
        .. code-block:: python

422
            import paddle.fluid as fluid
423
            import numpy as np
G
Guo Sheng 已提交
424 425 426 427 428 429 430
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
431
    """
432 433 434 435 436 437 438 439 440 441 442
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

443 444 445 446 447
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
448
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
449 450 451
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
452
        type='tensor_array_to_tensor',
L
li099 已提交
453 454 455
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
456 457
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
458 459 460
    return out, out_index


461
def sums(input, out=None):
462
    r"""
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
484 485

    Args:
486 487 488 489
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
490 491

    Returns:
492 493
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
494 495

    Examples:
F
fengjiayi 已提交
496
        .. code-block:: python
K
kavyasrinet 已提交
497

498 499 500 501 502 503 504 505 506
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
507

508 509
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
510
    """
511 512 513 514 515 516 517 518 519
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
520 521
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
522 523
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
524 525 526 527
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
528 529 530 531 532
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
533 534 535
    return out


F
fengjiayi 已提交
536
def assign(input, output=None):
537
    """
S
swtkiwi 已提交
538

539
    The OP copies the :attr:`input` to the :attr:`output`.
540

541 542
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
543
            float16, float32, float64, int32 and int64.
544 545
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
546 547

    Returns:
548
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
549 550 551

    Examples:
        .. code-block:: python
552

553
          import paddle
554
          import numpy as np
555 556 557 558 559 560 561 562
          data = paddle.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.nn.functional.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.nn.functional.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.nn.functional.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
563
    """
Y
Yu Yang 已提交
564
    helper = LayerHelper('assign', **locals())
565
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
566 567
    is_inplace = True if output is not None else False

X
xuwei06 已提交
568
    if isinstance(input, Variable):
569 570 571 572
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
573 574 575
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
576
        helper.append_op(
R
robot 已提交
577
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
578 579
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
580 581 582 583
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
584
            value_name = "fp32_values"
585
            values = [float(v) for v in input.flat]
586
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
587
            value_name = "int32_values"
588
            values = [int(v) for v in input.flat]
589 590 591
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
592
        else:
593 594
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
595
                "the data type of 'input' must be bool, float32, int32 or int64, but "
596
                "received %s." % convert_dtype(dtype))
597 598 599
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
600 601 602
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
603 604 605 606 607 608
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
609
                value_name: values
X
xuwei06 已提交
610 611
            })

612 613 614
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
615 616 617
    return output


618
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
619
    """
S
swtkiwi 已提交
620

W
wangchaochaohu 已提交
621
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
622
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
623

T
tianshuo78520a 已提交
624
    The attribute `stop_gradient` of the created Tensor is set to True.
625 626

    Args:
627 628 629
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
630
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
631
            be float16, float32, float64, int32, int64.
632 633 634 635 636 637
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
638 639
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
640 641

    Returns:
642
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
643

644 645 646
    Examples:
        .. code-block:: python

647
          import paddle.fluid as fluid
648
          # attr shape is a list which doesn't contain  Tensor.
649 650
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
651
          # data1=[[5], [5]] data2=[[5], [5]]
652

653
          # attr shape is a list which contains Tensor.
654
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
655
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
656

657
          # attr shape is a Tensor.
658
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
659
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
660
          
661
          # attr value is a Tensor.
W
wangchaochaohu 已提交
662 663
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
664
    """
665

W
wangchaochaohu 已提交
666
    attrs = {'force_cpu': force_cpu}
667
    dtype = convert_dtype(dtype)
668
    if not isinstance(value, Variable):
669
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
670
            attrs['str_value'] = str(int(value))
671
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
672 673
        else:
            attrs['str_value'] = str(float(value))
674
            attrs['value'] = float(value)
675 676

    if in_dygraph_mode():
677
        shape = utils.convert_shape_to_list(shape)
678 679
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
680 681

        if isinstance(value, Variable):
682
            if dtype in ['int64', 'int32']:
683
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
684
            else:
685
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
686

687 688
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
689 690
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
691 692 693
        out.stop_gradient = True
        return out

694 695 696
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
697 698
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
699 700
        inputs['ValueTensor'] = value

701
    check_shape(shape)
702
    check_dtype(dtype, 'dtype',
703 704 705
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
706

707 708 709 710 711
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
712
    utils.get_shape_tensor_inputs(
713
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
714

Y
Yu Yang 已提交
715
    if out is None:
X
Xin Pan 已提交
716
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
717
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
718 719
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
720
        inputs=inputs,
Y
Yu Yang 已提交
721
        outputs={'Out': [out]},
L
liym27 已提交
722
        attrs=attrs,
M
minqiyang 已提交
723
        stop_gradient=True)
Y
Yu Yang 已提交
724 725 726 727
    out.stop_gradient = True
    return out


728
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
729
@templatedoc()
Y
Yu Yang 已提交
730 731 732 733 734
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
735 736
                                  output_dim_idx=0,
                                  force_cpu=False):
737
    """
T
tianshuo78520a 已提交
738
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
739 740 741 742
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
743 744

    Args:
W
wangchaochaohu 已提交
745 746 747 748 749 750 751 752 753 754 755
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
756
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
757 758

    Returns:
W
wangchaochaohu 已提交
759
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
760 761 762 763 764

    Examples:

        .. code-block:: python

765
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
766
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
767
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
768
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
769

770
    """
Y
Yu Yang 已提交
771
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
772
    out = helper.create_variable_for_type_inference(dtype=dtype)
773 774 775 776 777 778
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
779
        'force_cpu': force_cpu
780 781 782 783 784
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
785 786 787 788
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
789
        attrs=attrs)
Y
Yu Yang 已提交
790 791 792 793
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
794 795
def argmin(x, axis=0):
    """
796 797 798
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
799

S
sneaxiy 已提交
800 801
    **argmin**

802 803
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
804 805

    Args:
806 807 808 809 810
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
811

S
sneaxiy 已提交
812
    Returns:
813
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
814

S
sneaxiy 已提交
815 816
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
817

818
            import paddle.fluid as fluid
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
846
    """
847 848 849
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
850
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
851
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
852 853 854 855 856
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
857
    out.stop_gradient = True
S
sneaxiy 已提交
858 859 860 861 862 863 864
    return out


def argmax(x, axis=0):
    """
    **argmax**

865 866
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
867 868

    Args:
869 870 871 872 873
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
874

S
sneaxiy 已提交
875
    Returns:
876
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
877

S
sneaxiy 已提交
878 879
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
880

881
            import paddle.fluid as fluid
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
909
    """
910 911 912
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
913
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
914
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
915 916 917 918 919
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
920
    out.stop_gradient = True
S
sneaxiy 已提交
921 922 923
    return out


924
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
925
    """
926 927 928
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
929

930 931 932
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
933 934

    Args:
935 936 937 938 939
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
940 941 942
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
943 944 945
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
946 947

    Returns:
948 949 950
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
951 952 953 954

    Examples:
        .. code-block:: python

955
            import paddle.fluid as fluid
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
997
    """
998 999 1000
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1001
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1002 1003 1004 1005
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1006 1007 1008 1009
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1010
                 'Indices': ids},
1011 1012
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1013 1014 1015
    return out, ids


Y
Yang Yu 已提交
1016
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1017
    """
1018 1019
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1020

1021
    Parameters:
1022
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1023
        dtype (np.dtype|str): Data type of output Tensor, it supports
1024
            bool, float16, float32, float64, int32 and int64.
1025 1026
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1027
            Default: False.
1028 1029

    Returns:
1030
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1031 1032 1033 1034

    Examples:
        .. code-block:: python

1035
          import paddle.fluid as fluid
1036 1037 1038 1039 1040
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1041 1042 1043 1044
    """
    return fill_constant(value=1.0, **locals())


1045
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1046
    """
1047 1048
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1049

1050
    Parameters:
1051
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1052
        dtype (np.dtype|str): Data type of output Tensor, it supports
1053
            bool, float16, float32, float64, int32 and int64.
1054 1055
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1056
            Default: False.
1057 1058
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1059 1060

    Returns:
1061
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1062 1063 1064 1065

    Examples:
        .. code-block:: python

1066
          import paddle.fluid as fluid
1067
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1068 1069 1070 1071
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1072 1073
    """
    return fill_constant(value=0.0, **locals())
1074 1075


F
fengjiayi 已提交
1076 1077
def reverse(x, axis):
    """
1078 1079 1080
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1081

1082
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1108
    Parameters:
1109 1110
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1111 1112
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1113 1114
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1115 1116

    Returns:
1117
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1118 1119 1120 1121

    Examples:
        .. code-block:: python

1122
          import paddle.fluid as fluid
1123 1124 1125 1126
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1137
    """
1138 1139 1140
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1141 1142 1143
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1144
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1145 1146
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1147
        inputs={'X': x},
F
fengjiayi 已提交
1148 1149 1150 1151 1152
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1153 1154 1155 1156 1157 1158 1159
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1160 1161 1162
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1178 1179
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1180
        file_path(str): The file path where variables will be saved.
1181
        overwrite(bool): Whether or not cover the given file when it has already
1182 1183
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1184 1185 1186 1187 1188 1189 1190 1191

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1192
            import paddle.fluid as fluid
1193 1194 1195 1196 1197 1198 1199
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1212
    Loads a list of variable from a single file.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1224 1225 1226 1227 1228 1229 1230


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1231
       x (Tensor): The Tensor to be checked.
1232 1233

    Returns:
S
Steffy-zxf 已提交
1234
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1235 1236 1237 1238
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1239 1240
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1241
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1242
          # [False]
1243

1244
    """
S
Steffy-zxf 已提交
1245 1246 1247
    if in_dygraph_mode():
        return core.ops.isinf(x)

1248
    check_type(x, 'x', (Variable), 'has_inf')
1249
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1250
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1251 1252 1253 1254 1255 1256 1257 1258 1259
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1260
       x (Tensor): The Tensor to be checked.
1261 1262

    Returns:
S
Steffy-zxf 已提交
1263
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1264 1265 1266 1267
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1268 1269
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1270
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1271
          # [False]
1272

1273
    """
S
Steffy-zxf 已提交
1274 1275 1276
    if in_dygraph_mode():
        return core.ops.isnan(x)

1277
    check_type(x, 'x', (Variable), 'has_nan')
1278
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1279
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1280 1281 1282 1283 1284 1285
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1286

1287 1288 1289 1290
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1291
        x(Tensor): The Tensor to be checked.
1292 1293

    Returns:
N
Noel 已提交
1294
        Tensor: The tensor storing the output, contains a bool value.
1295 1296 1297 1298 1299

    Examples:

        .. code-block:: python

N
Noel 已提交
1300 1301 1302 1303 1304 1305
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1306
    """
1307 1308
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1309
    helper = LayerHelper("isfinite", **locals())
1310

1311
    out = helper.create_variable_for_type_inference(dtype='bool')
1312 1313
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1314 1315


1316
def range(start, end, step, dtype, name=None):
W
whs 已提交
1317
    """
1318
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1319

1320 1321
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1322

1323 1324
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1325

L
Liufang Sang 已提交
1326
    Parameters:
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1350 1351 1352 1353 1354

    examples:

        .. code-block:: python

1355
            import paddle.fluid as fluid
W
whs 已提交
1356

1357 1358
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1359

1360 1361 1362 1363 1364 1365 1366
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1367

W
whs 已提交
1368
    if not isinstance(start, Variable):
1369 1370
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1371 1372
    elif start.dtype != dtype:
        start = cast(start, dtype)
1373

W
whs 已提交
1374
    if not isinstance(end, Variable):
1375 1376
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1377 1378
    elif end.dtype != dtype:
        end = cast(end, dtype)
1379

W
whs 已提交
1380
    if not isinstance(step, Variable):
1381 1382
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1383 1384
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1385

1386 1387
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1388

1389 1390 1391 1392
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1393 1394 1395 1396 1397
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1398
        outputs={'Out': out})
1399
    out.stop_gradient = True
W
whs 已提交
1400
    return out
Z
zhoukunsheng 已提交
1401 1402


1403
def linspace(start, stop, num, dtype=None, name=None):
1404
    r"""
1405
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1406 1407

    Args:
1408 1409 1410 1411
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1412
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1413
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1414
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1415
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1416 1417
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1418 1419

    Returns:
1420
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1421 1422
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1423

Z
zhoukunsheng 已提交
1424
    Examples:
Z
zhoukunsheng 已提交
1425 1426
        .. code-block:: python

1427 1428 1429
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1430 1431

    """
1432 1433
    if dtype is None:
        dtype = 'float32'
1434 1435 1436
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1437 1438
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1439 1440
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1441
    if not isinstance(start, Variable):
1442 1443
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1444
    if not isinstance(stop, Variable):
1445 1446
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1447
    if not isinstance(num, Variable):
1448 1449
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1450
    if in_dygraph_mode():
1451 1452
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1453 1454 1455

    helper = LayerHelper("linspace", **locals())

1456 1457 1458
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1459
    if isinstance(start, Variable):
1460 1461
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1462 1463
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1464

1465
    if isinstance(stop, Variable):
1466 1467
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1468 1469 1470 1471 1472 1473
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1474 1475 1476 1477 1478 1479 1480 1481
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1482 1483

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1484 1485 1486

    helper.append_op(
        type='linspace',
1487 1488 1489 1490
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1491
        outputs={'Out': [out]})
1492 1493
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1494
    return out
1495 1496


Z
zhoukunsheng 已提交
1497 1498
def zeros_like(x, out=None):
    """
1499
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1500 1501 1502
    with `x`.

    Args:
1503 1504 1505 1506 1507 1508
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1509 1510

    Returns:
1511 1512 1513
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1514 1515 1516 1517

    Examples:
        .. code-block:: python

1518
          import paddle.fluid as fluid
1519
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1520 1521
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1522 1523
    """

1524 1525
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1526 1527 1528
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1529 1530 1531
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1532
            'zeros_like')
1533

Z
zhoukunsheng 已提交
1534 1535 1536 1537
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1538 1539


1540
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1541
def diag(diagonal):
1542
    r"""
1543 1544 1545
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1546

1547
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1548 1549

    Args:
1550 1551
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1552 1553

    Returns:
1554 1555
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1556 1557 1558 1559 1560 1561 1562

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1563 1564 1565

          import paddle.fluid as fluid
          import numpy as np
1566 1567 1568
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1569 1570

    """
1571 1572 1573
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1586 1587


1588 1589 1590 1591 1592
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1593
    """
1594
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1595 1596 1597

    Args:
        num_rows(int): the number of rows in each batch tensor.
1598 1599
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1600 1601
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1602
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1603 1604 1605 1606
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1607 1608

    Returns:
1609
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1610 1611 1612 1613 1614

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1615 1616
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1617
          #  [0, 1, 0]
1618 1619
          #  [0, 0, 1]]

1620
          data = fluid.layers.eye(2, 3, dtype='int32')
1621
          # [[1, 0, 0]
1622
          #  [0, 1, 0]]
1623 1624

          data = fluid.layers.eye(2, batch_shape=[3])
1625 1626 1627 1628 1629
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1630 1631
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1632 1633 1634 1635 1636
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1659 1660

    if batch_shape is not None:
1661 1662 1663 1664 1665 1666 1667
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1668 1669
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1670
        for batch_val in (batch_shape):
1671 1672
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1673 1674 1675 1676 1677 1678

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1679 1680 1681
    return out


Z
zhoukunsheng 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1694
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1705 1706
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1707 1708 1709 1710

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1711 1712 1713 1714
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1715 1716 1717 1718 1719 1720
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1721 1722 1723 1724 1725 1726


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)