test_clip.py 2.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid

BATCH_SIZE = 128
CLIP_MAX = 2e-6
CLIP_MIN = -1e-6

prog = fluid.framework.Program()

with fluid.program_guard(main_program=prog):
    image = fluid.layers.data(name='x', shape=[784], dtype='float32')

    hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
    hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
    predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')

    label = fluid.layers.data(name='y', shape=[1], dtype='int64')

    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name).set_error_clip(
    fluid.clip.ErrorClipByValue(
        max=CLIP_MAX, min=CLIP_MIN))

avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
fluid.backward.append_backward(loss=avg_cost)
fluid.backward.append_backward(
    loss=avg_cost_clip, callback=fluid.clip.error_clip_callback)

hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD")
hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD")

F
fengjiayi 已提交
50 51 52
hidden2_grad = prog.block(0).var(hidden2.name + "@GRAD")
hidden2_grad_clip = prog_clip.block(0).var(hidden2.name + "@GRAD")

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=8192),
    batch_size=BATCH_SIZE)

place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
exe.run(fluid.default_startup_program())

count = 0
for data in train_reader():
    count += 1
    if count > 5:
        break
F
fengjiayi 已提交
68 69 70 71 72 73 74 75 76 77
    out1, out2 = exe.run(prog,
                         feed=feeder.feed(data),
                         fetch_list=[hidden1_grad, hidden2_grad])
    out1_clip, out2_clip = exe.run(
        prog_clip,
        feed=feeder.feed(data),
        fetch_list=[hidden1_grad_clip, hidden2_grad_clip])
    if not ((out1.clip(
            min=CLIP_MIN, max=CLIP_MAX) == out1_clip).all() and
            (out2 == out2_clip).all()):
78 79 80
        exit(1)

exit(0)