truncated_gaussian_random_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <limits>
#include <random>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
  if (x < -1 || x > 1) {
    return std::numeric_limits<T>::quiet_NaN();
  } else if (x == 1.0) {
    return std::numeric_limits<T>::infinity();
  } else if (x == -1.0) {
    return -std::numeric_limits<T>::infinity();
  }

  const T LN2 = 6.931471805599453094172321214581e-1;

  const T A0 = 1.1975323115670912564578e0;
  const T A1 = 4.7072688112383978012285e1;
  const T A2 = 6.9706266534389598238465e2;
  const T A3 = 4.8548868893843886794648e3;
  const T A4 = 1.6235862515167575384252e4;
  const T A5 = 2.3782041382114385731252e4;
  const T A6 = 1.1819493347062294404278e4;
  const T A7 = 8.8709406962545514830200e2;

  const T B0 = 1.0000000000000000000e0;
  const T B1 = 4.2313330701600911252e1;
  const T B2 = 6.8718700749205790830e2;
  const T B3 = 5.3941960214247511077e3;
  const T B4 = 2.1213794301586595867e4;
  const T B5 = 3.9307895800092710610e4;
  const T B6 = 2.8729085735721942674e4;
  const T B7 = 5.2264952788528545610e3;

  const T C0 = 1.42343711074968357734e0;
  const T C1 = 4.63033784615654529590e0;
  const T C2 = 5.76949722146069140550e0;
  const T C3 = 3.64784832476320460504e0;
  const T C4 = 1.27045825245236838258e0;
  const T C5 = 2.41780725177450611770e-1;
  const T C6 = 2.27238449892691845833e-2;
  const T C7 = 7.74545014278341407640e-4;

  const T D0 = 1.4142135623730950488016887e0;
  const T D1 = 2.9036514445419946173133295e0;
  const T D2 = 2.3707661626024532365971225e0;
  const T D3 = 9.7547832001787427186894837e-1;
  const T D4 = 2.0945065210512749128288442e-1;
  const T D5 = 2.1494160384252876777097297e-2;
  const T D6 = 7.7441459065157709165577218e-4;
  const T D7 = 1.4859850019840355905497876e-9;

  const T E0 = 6.65790464350110377720e0;
  const T E1 = 5.46378491116411436990e0;
  const T E2 = 1.78482653991729133580e0;
  const T E3 = 2.96560571828504891230e-1;
  const T E4 = 2.65321895265761230930e-2;
  const T E5 = 1.24266094738807843860e-3;
  const T E6 = 2.71155556874348757815e-5;
  const T E7 = 2.01033439929228813265e-7;

  const T F0 = 1.414213562373095048801689e0;
  const T F1 = 8.482908416595164588112026e-1;
  const T F2 = 1.936480946950659106176712e-1;
  const T F3 = 2.103693768272068968719679e-2;
  const T F4 = 1.112800997078859844711555e-3;
  const T F5 = 2.611088405080593625138020e-5;
  const T F6 = 2.010321207683943062279931e-7;
  const T F7 = 2.891024605872965461538222e-15;

  T abs_x = abs(x);

  if (abs_x <= 0.85) {
    T r = 0.180625 - 0.25 * x * x;
    T num =
        (((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
             r +
         A0);
    T den =
        (((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
             r +
         B0);
    return x * num / den;
  }

  T r = sqrt(LN2 - log(1.0 - abs_x));

  T num, den;
  if (r <= 5.0) {
    r = r - 1.6;
    num =
        (((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
             r +
         C0);
    den =
        (((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
             r +
         D0);
  } else {
    r = r - 5.0;
    num =
        (((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
             r +
         E0);
    den =
        (((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
             r +
         F0);
  }

  if (x < 0) {
    return -num / den;
  } else {
    return num / den;
  }
}

template <typename T>
struct TruncatedNormal {
  T mean, std;
  T a_normal_cdf;
  T b_normal_cdf;
  TruncatedNormal(T mean, T std) : mean(mean), std(std) {
    auto normal_cdf = [](T x) {
      return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
    };
    a_normal_cdf = normal_cdf(-2.0);
    b_normal_cdf = normal_cdf(2.0);
  }

  T operator()(T value) const {
    auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
W
wanghaoshuang 已提交
151
    return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  }
};

template <typename T>
class CPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
                                           1.0);
    TruncatedNormal<T> truncated_normal(mean, std);
    int64_t size = tensor->numel();
    for (int64_t i = 0; i < size; ++i) {
      data[i] = truncated_normal(dist(engine));
    }
  }
};

class TruncatedGaussianRandomOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of TruncatedGaussianRandomOp should not be null.");
    auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
    std::vector<int64_t> out_dim;
    out_dim.reserve(shape.size());
    for (auto dim : shape) {
      out_dim.push_back(static_cast<int64_t>(dim));
    }
    PADDLE_ENFORCE(shape.size() > 0UL,
                   "shape can be one int or array. shape must be set.");
    ctx->SetOutputDim("Out", framework::make_ddim(out_dim));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};
    return framework::OpKernelType(
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
        ctx.device_context(), layout, library);
  }
};

class TruncatedGaussianRandomOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddOutput("Out", "Output tensor of truncated gaussian random op.");

    AddAttr<std::vector<int>>("shape",
                              "(vector<int>) "
                              "The dimension of random tensor.");
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
    AddAttr<int>("seed",
                 "(int, default 0) "
                 "Random seed of generator."
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
        .SetDefault(0);
    AddAttr<int>("dtype",
                 "(int, default 5(FP32)) "
                 "Output data type.")
        .SetDefault(framework::proto::VarType::FP32);
    AddComment(R"DOC(
TruncatedGaussianRandom Operator.

Used to initialize tensors with truncated gaussian random generator.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(truncated_gaussian_random,
                             ops::TruncatedGaussianRandomOp,
                             ops::TruncatedGaussianRandomOpMaker);
REGISTER_OP_CPU_KERNEL(truncated_gaussian_random,
                       ops::CPUTruncatedGaussianRandomKernel<float>);