pool_op.cc 26.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18 19 20 21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24 25 26 27

namespace paddle {
namespace operators {

28 29
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
30 31
  int output_size;
  if (!ceil_mode) {
32 33
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
34 35
  } else {
    output_size =
36 37 38
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
39
  }
40 41
  PADDLE_ENFORCE_GT(
      output_size, 0,
42 43 44 45 46 47
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
48 49 50
  return output_size;
}

C
chengduo 已提交
51
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
52 53 54 55 56 57
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
58

C
chengduoZH 已提交
59
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
60 61 62
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
63
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
64
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
65 66 67 68
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
69

70
  auto in_x_dims = ctx->GetInputDim("X");
71 72
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
73 74 75 76
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
77 78 79

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
99

100 101 102 103
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
120 121 122
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
123
    for (int i = 0; i < data_dims.size(); ++i) {
124
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
125
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
126
      } else {
127 128 129
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
130
      }
131
    }
132
  }
133 134 135 136 137 138 139 140 141 142

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

143
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
144
  ctx->ShareLoD("X", "Out");
145 146
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
bool CanMKLDNNSupportPool(const framework::ExecutionContext& ctx) {
  if (ctx.Attr<bool>("adaptive") == false) return true;
  // (jczaja): oneDNN is supporting only unchangable in size pool window
  auto src_tz = paddle::framework::vectorize(ctx.Input<Tensor>("X")->dims());
  std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
  // Fast but not exhustive check
  if ((src_tz[src_tz.size() - 1] % ksize[1] == 0) &&
      (src_tz[src_tz.size() - 2] % ksize[0] == 0))
    return true;

  // Exhustive check
  auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
  auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
  auto OH = static_cast<double>(ksize[0]);
  auto OW = static_cast<double>(ksize[1]);

  auto SH = static_cast<int>(floor((IH * 2.0) / OH) - floor(IH / OH));
  auto SW = static_cast<int>(floor((IW * 2.0) / OW) - floor(IW / OW));
  auto KH = static_cast<int>(ceil((IH * 2.0) / OH) - floor(IH / OH));
  auto KW = static_cast<int>(ceil((IW * 2.0) / OW) - floor(IW / OW));

  auto PH = (SH * (static_cast<int>(OH) - 1) + KH - static_cast<int>(IH));
  auto PW = (SW * (static_cast<int>(OW) - 1) + KW - static_cast<int>(IW));
  // If there is additional padding needed then
  // this is situation that oneDNN cannot comply with
  // paddlepaddle reference implementation
  return (PH == 0) && (PW == 0);
}

176
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
177
    const framework::ExecutionContext& ctx) const {
178
  framework::LibraryType library_{framework::LibraryType::kPlain};
179
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
180 181
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
182
#ifdef PADDLE_WITH_CUDA
183 184
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
185 186
  }
#endif
187 188
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
189
      this->CanMKLDNNBeUsed(ctx) && CanMKLDNNSupportPool(ctx)) {
190
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
191
    layout_ = framework::DataLayout::kMKLDNN;
192
  }
193
#endif
194

195 196 197
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
222
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
223 224 225
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
226
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
227 228
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
229 230 231
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

232
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
233
    const framework::ExecutionContext& ctx) const {
234
  framework::LibraryType library_{framework::LibraryType::kPlain};
235
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
236 237
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
238
#ifdef PADDLE_WITH_CUDA
239 240
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
241 242
  }
#endif
243 244
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
245
      this->CanMKLDNNBeUsed(ctx) && CanMKLDNNSupportPool(ctx)) {
246
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
247
    layout_ = framework::DataLayout::kMKLDNN;
248
  }
249
#endif
250

251
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
252

K
Kexin Zhao 已提交
253 254
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
275
void Pool2dOpMaker::Make() {
276 277
  AddInput(
      "X",
C
chengduoZH 已提交
278
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
279 280 281
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
282
  AddOutput("Out",
K
kexinzhao 已提交
283 284 285 286
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
287
            "and W is the width of the feature.");
288

C
chengduoZH 已提交
289
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
290 291
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
292
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
293
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
294 295
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
296
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
297 298
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
299
  // TypedAttrChecker don't support vector type.)
300 301
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
302 303 304
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
305
      .SetDefault(false);
K
kexinzhao 已提交
306 307 308
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
309 310
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
311 312 313
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
314 315
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
316
      "If global_pooling = true, paddings and kernel size will be ignored.")
317
      .SetDefault({0, 0});
318 319
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
320
      "(bool) When true, will exclude the zero-padding in the "
321
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
322 323
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
324
      .SetDefault(true);
325 326
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
327
      "(bool) When true, will perform adaptive pooling instead, "
328 329
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
330 331
      "pooling in each grid area to get output pooling value. "
      "Default False.")
332 333
      .SetDefault(false);

334 335
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
336
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
337
      .SetDefault(false);
338 339
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
340
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
341
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
342
      "the floor function will be used. Default False")
343
      .SetDefault(false);
344
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
345
                "(bool) Only used in mkldnn kernel. Default False")
346
      .SetDefault(false);
347 348 349 350
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
351
      .SetDefault(false);
352 353 354 355 356
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
357 358 359 360 361 362
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
363
      .SetDefault("NCHW");
364 365 366 367 368
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

369 370 371 372 373 374
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
375
  // TODO(dzhwinter): need to registered layout transform function
376 377

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
378 379 380
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
381
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
382
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
383
These two elements represent height and width, respectively.
C
chengduoZH 已提交
384 385
The input(X) size and output(Out) size may be different.

386
Example:
F
fengjiayi 已提交
387

C
chengduoZH 已提交
388
  Input:
F
fengjiayi 已提交
389

K
kexinzhao 已提交
390
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
391

C
chengduoZH 已提交
392
  Output:
F
fengjiayi 已提交
393

K
kexinzhao 已提交
394
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

412 413
  For ceil_mode = false:
       $$
414
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
415 416
       $$
       $$
417
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
418
       $$
419

420 421
  For ceil_mode = true:
       $$
422
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
423 424
       $$
       $$
425
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
426
       $$
K
kexinzhao 已提交
427

428
  For exclusive = false:
429
       $$
430
       hstart = i * strides[0] - pad_height_top
431 432 433 434 435
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
436
       wstart = j * strides[1] - pad_width_left
437 438 439 440 441 442 443
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
444

445
  For exclusive = true:
446
       $$
447
       hstart = max(0, i * strides[0] - pad_height_top)
448 449 450 451 452
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
453
       wstart = max(0, j * strides[1] - pad_width_left)
454 455 456 457 458 459 460
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
461

462
)DOC");
463 464
}

C
chengduo 已提交
465 466
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
467
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
468
      const override {
469 470
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
471 472 473
  }
};

Y
Yu Yang 已提交
474
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
475 476
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
477 478
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
479 480 481
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
482
  AddOutput("Out",
C
chengduoZH 已提交
483
            "(Tensor) The output tensor of pooling operator."
484
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
485 486
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
487
            "width of the feature, respectively.");
488

C
chengduoZH 已提交
489
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
490
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
491
                       "and \"avg\" for average-pooling.")
492
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
493 494 495 496
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
497
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
498 499
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
500
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
501 502
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
503 504 505
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
506
      .SetDefault(false);
K
kexinzhao 已提交
507 508 509 510
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
511 512
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
513 514
  AddAttr<std::vector<int>>(
      "paddings",
515 516 517 518
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
519
      "If global_pooling = true, ksize and paddings will be ignored.")
520 521
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
522 523
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
524
      "(bool) When true, will exclude the zero-padding in the "
525
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
526 527
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
528
      .SetDefault(true);
529 530
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
531
      "(bool) When true, will perform adaptive pooling instead, "
532 533
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
534 535
      "pooling in each grid area to get output pooling value. "
      "Default False")
536
      .SetDefault(false);
537

538 539
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
540
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
541
      .SetDefault(false);
542 543
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
544
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
545
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
546
      "the floor function will be used. Default False")
547
      .SetDefault(false);
548
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
549
                "(bool) Only used in mkldnn kernel. Default False")
550
      .SetDefault(false);
551 552
  AddAttr<std::string>(
      "data_format",
553 554 555
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
556
      "the input will be transformed automatically. ")
557 558 559 560 561 562 563
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
564 565
  // TODO(dzhwinter): need to registered layout transform function

566
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
567 568
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
569
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
570
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
571 572
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
573
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
574 575 576

Example:
  Input:
K
kexinzhao 已提交
577
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
578
  Output:
K
kexinzhao 已提交
579
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

603
  For ceil_mode = false:
604
       $$
605
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
606 607
       $$
       $$
608
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
609 610
       $$
       $$
611
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
612
       $$
613
  For ceil_mode = true:
614
       $$
615
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
616 617
       $$
       $$
618
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
619 620
       $$
       $$
621
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
622
       $$
D
dengkaipeng 已提交
623

624
  For exclusive = false:
625
       $$
626
       dstart = i * strides[0] - pad_depth_front
627 628 629 630 631
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
632
       hstart = j * strides[1] - pad_height_top
633 634 635 636 637
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
638
       wstart = k * strides[2] -  pad_width_left
639 640 641 642 643 644 645
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
646

647
  For exclusive = true:
648
       $$
649
       dstart = max(0, i * strides[0] - pad_depth_front)
650 651 652 653 654
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
655 656 657
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
658 659 660
       hend = min(H, hstart + ksize[1])
       $$
       $$
661
       wstart = max(0, k * strides[2] - pad_width_left)
662 663 664 665 666 667 668
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
669

670
)DOC");
671
}
672 673 674 675 676
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
677 678 679 680
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
681
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
682

Q
QI JUN 已提交
683 684 685 686 687
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
688
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
689

H
hong 已提交
690 691 692 693
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
694
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
695

Q
QI JUN 已提交
696 697 698 699 700 701
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);