test_einsum_v2.py 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import contextlib
import unittest
import paddle
from paddle.fluid import core
20
from paddle.fluid.dygraph.amp.auto_cast import _is_gpu_bfloat16_supported
21 22

import os
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
os.environ['FLAGS_new_einsum'] = "1"


def error_trans(func, *args, **kargs):
    """ 
    transport C++ exception into Python exception. 
    because einsum_v2 raise different exception with einsum_v1.
    """
    try:
        out = func(*args, **kargs)
    except ValueError as e:
        if "Same label have different shapes" in str(e):
            raise AssertionError("Invalid operands: label i "
                                 "corresponds to non-broadcastable dimensions.")


class TestErrors(unittest.TestCase):
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def setUp(self):
        pass

    def test_diagonalize_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('...ii->...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i->i...', a)

    def test_param_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(
                AssertionError,
            ("Required at least one operand in Einsum API, but received 0 ")):
            paddle.einsum('ijk')
65 66 67
        with self.assertRaisesRegex(
                AssertionError,
            ('Invalid equation: multiple `->` were found.')):
68
            paddle.einsum('i -> j -> k', a)
69 70 71 72
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 3 segments in the label equation.")):
73
            paddle.einsum('i,j,k', a, a)
74 75 76 77
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 1 segments in the label equation.")):
78
            paddle.einsum('ij -> k', a, a)
79 80 81 82
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 1, "
             "but found 2 segments in the label equation.")):
83
            paddle.einsum('i, -> k', a)
84 85 86
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string '' misses dimensions.")):
87
            paddle.einsum('->', a)
88 89 90
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string 'i' misses dimensions.")):
91
            paddle.einsum('i', a)
92 93 94
        with self.assertRaisesRegex(
                AssertionError, ("Invalid equation: _ is not a valid label, "
                                 "which should be letters.")):
95
            paddle.einsum('i_', a)
96 97 98
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
99
            paddle.einsum('i..j', a)
100 101 102
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
103
            paddle.einsum('...k...', a)
104 105 106
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: missing ellipsis in output labels.")):
107
            paddle.einsum('i...->i', a)
108 109 110
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: duplicate output labels are found.")):
111
            paddle.einsum('i...->i...i', a)
112 113 114 115
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid operands: label i "
             "corresponds to non-broadcastable dimensions.")):
116 117 118 119
            error_trans(paddle.einsum, 'ij...,ji...', a, a)


class TestEinsum(unittest.TestCase):
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    @classmethod
    def setUpClass(cls):
        np.random.seed(12345)

        cls.TEST_SAMPLES = {
            "a": np.random.rand(1, 1),
            "b": np.random.rand(1),
            "x": np.random.rand(5),
            "y": np.random.rand(7),
            "A": np.random.rand(4, 5),
            "B": np.random.rand(2, 5),
            "C": np.random.rand(3, 7),
            "D": np.random.rand(3, 4, 5),
            "E": np.random.rand(3, 5, 2),
            "F": np.random.rand(2, 4, 5, 3),
            "G": np.random.rand(4, 2, 5),
            "H": np.random.rand(3, 2, 4),
            "I": np.random.rand(2, 2),
            "J": np.random.rand(1, 3, 5),
            "K": np.random.rand(1, 2, 3, 4),
        }

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
154
            np.allclose(actual, expect, rtol=rtol, atol=atol),
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def setUp(self):
        self.sample = {"paradigm": "i->", "data": ["x"]}

    def test_forward(self):
        operands = [
            TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"]
        ]
        expected_result = np.einsum(self.sample["paradigm"], *operands)
        equation = self.sample["paradigm"]

        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)

        with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)


class TestEinsumVectorDot(TestEinsum):
181

182 183 184 185 186
    def setUp(self):
        self.sample = {"paradigm": "i,i->", "data": ["x", "x"]}


class TestEinsumVectorMul(TestEinsum):
187

188 189 190 191 192
    def setUp(self):
        self.sample = {"paradigm": "i,i->i", "data": ["x", "x"]}


class TestEinsumVectorOuter(TestEinsum):
193

194 195 196 197 198
    def setUp(self):
        self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]}


class TestEinsumMatrixTranspose(TestEinsum):
199

200 201 202 203 204
    def setUp(self):
        self.sample = {"paradigm": "ij->ji", "data": ["A"]}


class TestEinsumMatrixRowSum(TestEinsum):
205

206 207 208 209 210
    def setUp(self):
        self.sample = {"paradigm": "ij->j", "data": ["A"]}


class TestEinsumMatrixColSum(TestEinsum):
211

212 213 214 215 216
    def setUp(self):
        self.sample = {"paradigm": "ij->i", "data": ["A"]}


class TestEinsumMatrixEleMul(TestEinsum):
217

218 219 220 221 222
    def setUp(self):
        self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]}


class TestEinsumDegenerateMatrixVecMul(TestEinsum):
223

224 225 226 227 228
    def setUp(self):
        self.sample = {"paradigm": "ij,j", "data": ["a", "b"]}


class TestEinsumMatrixVecMul(TestEinsum):
229

230 231 232 233 234
    def setUp(self):
        self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]}


class TestEinsumMatrixMul(TestEinsum):
235

236 237 238 239 240
    def setUp(self):
        self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]}


class TestEinsumMatrixOuter(TestEinsum):
241

242 243 244 245 246
    def setUp(self):
        self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]}


class TestEinsumTensorBMM(TestEinsum):
247

248 249 250 251 252
    def setUp(self):
        self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]}


class TestEinsumTensorContract1(TestEinsum):
253

254 255 256 257 258
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]}


class TestEinsumTensorContract2(TestEinsum):
259

260 261 262 263 264
    def setUp(self):
        self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]}


class TestEinsumTensorContract3(TestEinsum):
265

266 267 268 269 270
    def setUp(self):
        self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]}


class TestEinsumTensorContract4(TestEinsum):
271

272 273 274 275 276
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]}


class TestEinsumTensorContract5(TestEinsum):
277

278 279 280 281 282
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]}


class TestEinsumTensorContract6(TestEinsum):
283

284 285 286 287 288
    def setUp(self):
        self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]}


class TestEinsumTensorContract7(TestEinsum):
289

290 291 292 293 294
    def setUp(self):
        self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]}


class TestEinsumEllipsis1(TestEinsum):
295

296 297 298 299 300
    def setUp(self):
        self.sample = {"paradigm": "i...->...", "data": ["G"]}


class TestEinsumEllipsis2(TestEinsum):
301

302 303 304 305 306
    def setUp(self):
        self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]}


class TestEinsumEllipsis3(TestEinsum):
307

308 309 310 311 312
    def setUp(self):
        self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]}


class TestEinsumTestEinsumBilinear(TestEinsum):
313

314 315 316 317 318
    def setUp(self):
        self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]}


class TestEinsumTestEinsumOthers1(TestEinsum):
319

320 321 322 323 324
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]}


class TestEinsumTestEinsumOthers2(TestEinsum):
325

326 327 328 329 330
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]}


class TestEinsumBatch1(TestEinsum):
331

332 333 334 335 336
    def setUp(self):
        self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]}


class TestNumpyTests(unittest.TestCase):
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def setUp(self):
        pass

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
352
            np.allclose(actual, expect, rtol=rtol, atol=atol),
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def check_output(self, eqn, *ops):
        expect = np.einsum(eqn, *ops)
        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(op) for op in ops]
            actual = paddle.einsum(eqn, *pd_operands)
            self.check_output_equal(actual.numpy(), expect)

    def test_sums(self):
        for n in range(1, 17):
            a = np.arange(n).astype('float')
            self.check_output("i->", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("...i->...", a)

        for n in range(1, 17):
            a = np.arange(2 * n).reshape(2, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(3 * n).reshape(3, n).astype('float')
            b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("..., ...", a, b)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("...i, ...i", a, b)

        for n in range(1, 11):
            a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("i..., i...", a, b)

        for n in range(1, 17):
            a = (np.arange(3) + 1).astype('float')
            b = (np.arange(n) + 1).astype('float')
            self.check_output("i,j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ij, j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ji,j", a.T, b.T)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n * 6).reshape(n, 6).astype('float')
            self.check_output("ij,jk", a, b)

        a = np.arange(12).reshape(3, 4).astype('float')
        b = np.arange(20).reshape(4, 5).astype('float')
        c = np.arange(30).reshape(5, 6).astype('float')
        self.check_output("ij,jk,kl", a, b, c)

        a = np.arange(60).reshape(3, 4, 5).astype('float')
        b = np.arange(24).reshape(4, 3, 2).astype('float')
        self.check_output("ijk, jil -> kl", a, b)

        for n in range(1, 25):
            a = np.arange(n).astype('float')
            self.check_output("...,...", a, a)
            self.check_output("i,i", a, a)

        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((10, 2)).astype('float')
        #q = np.ones((1, 2)).astype('float')
        #self.check_output('ij,ij->j', p, q)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #x = np.array([2., 3.]).astype('float')
        #y = np.array([4.]).astype('float')
        #self.check_output("i, i", x, y)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((1, 5)) / 2
        #q = np.ones((5, 5)) / 2
        #self.check_output("...ij,...jk->...ik", p, p)
        #self.check_output("...ij,...jk->...ik", p, q)

        x = np.eye(2).astype('float')
        y = np.ones(2).astype('float')
        self.check_output("ji,i->", x, y)
        self.check_output("i,ij->", y, x)
        self.check_output("ij,i->", x, y)

    def test_large_nops(self):
        pass
        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #a = np.arange(4 * 3 * 1 * 4).reshape(4, 3, 1, 4).astype('float')
        #self.check_output('a...b,b...c,c...d', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('...ab,...ba,...ab,...ab', a, a, a, a)

    def test_static_graph(self):
        paddle.enable_static()
        fluid = paddle.fluid
        if fluid.core.is_compiled_with_cuda():
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CPUPlace()
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            a = paddle.static.data(name='a',
                                   shape=[3, None, None, None],
                                   dtype='float')
            b = paddle.static.data(name='b',
                                   shape=[2, None, None, None],
                                   dtype='float')
            c = paddle.static.data(name='c',
                                   shape=[None, None, 2, None],
                                   dtype='float')
            d = paddle.static.data(name='d',
                                   shape=[None, None, 5],
                                   dtype='float')
            e = paddle.static.data(name='e',
                                   shape=[None, 2, None],
                                   dtype='float')
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

            outs = []
            outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b))
            outs.append(paddle.einsum('...ik, ...j', c, d))
            outs.append(paddle.einsum('...kj, ...ik', d, e))
            outs.append(paddle.einsum('ijk..., ikj', c, e))
            outs.append(paddle.einsum('ijk..., ikj->...ij', c, e))
        exe = fluid.Executor(self.place)
        exe.run(startup)
        a = np.arange(72).reshape(3, 2, 3, 4).astype('float')
        b = np.arange(48).reshape(2, 2, 3, 4).astype('float')
        c = np.arange(48).reshape(2, 3, 2, 4).astype('float')
        d = np.arange(30).reshape(2, 3, 5).astype('float')
        e = np.arange(12).reshape(2, 2, 3).astype('float')
        feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e}
        actual = exe.run(main, feed=feeds, fetch_list=[outs])
        expect = []
        expect.append(np.einsum("ibnd,jbnd->bnij", a, b))
        expect.append(np.einsum('...ik, ...j', c, d))
        expect.append(np.einsum('...kj, ...ik', d, e))
        expect.append(np.einsum('ijk..., ikj', c, e))
        expect.append(np.einsum('ijk..., ikj->...ij', c, e))
        for a, e in zip(actual, expect):
            self.check_output_equal(a, e)


512
class TestStaticGraphShape(unittest.TestCase):
513

514 515 516 517 518 519 520 521 522 523 524 525 526
    def setUp(self):
        paddle.enable_static()

    def tearDown(self):
        paddle.disable_static()

    def test_shape(self):
        A = paddle.static.data(name='x', shape=[-1])
        B = paddle.static.data(name='y', shape=[384])
        C = paddle.einsum('i,d->id', A, B)
        self.assertEqual(C.shape, (-1, 384))


527 528 529 530 531 532
class TestBF16(unittest.TestCase):
    """
    EinsumOp support bfloat16 type, add unittest here for the correctness.
    """

    def test_shape(self):
533 534
        if paddle.is_compiled_with_cuda() and _is_gpu_bfloat16_supported():
            """ MatmulKernel support bfloat16 only if cuda_major >= 11.0 and Compute Capability >= 8.0
535 536 537 538 539 540
            """
            A = paddle.to_tensor(np.array([1.0, 2.0])).astype(paddle.bfloat16)
            A = A.cuda()
            B = paddle.to_tensor(np.array([2.0, 3.0])).astype(paddle.bfloat16)
            B = B.cuda()
            C = paddle.einsum('i,i->', A, B)
541
            self.assertEqual(C.astype(paddle.float32).item(), 8.0)
542 543


X
xiongkun 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557
class TestComplex(unittest.TestCase):
    """
    EinsumOp support Complex type
    """

    def test_shape(self):
        a = paddle.rand([4, 4])
        b = paddle.rand([4, 4])
        c = paddle.einsum('xy,yz->xz', a, b)
        a = paddle.cast(a, 'complex64')
        b = paddle.cast(b, 'complex64')
        c = paddle.einsum('xy,yz->xz', a, b)


558
if __name__ == "__main__":
559
    unittest.main()