layers.py 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
M
minqiyang 已提交
19
import collections
20
import six
21
import re
C
chengduo 已提交
22
from . import parallel_helper
X
Xin Pan 已提交
23
from .. import unique_name
24
from paddle.fluid import core
25
from .layer_object_helper import LayerObjectHelper
26
from .base import program_desc_tracing_guard
27
from paddle.fluid import framework
28
from ..param_attr import ParamAttr
H
hong 已提交
29
import copy
30
import weakref
H
hong 已提交
31
import warnings
32

33
__all__ = ['Layer']
34

35 36 37 38 39 40 41 42
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
60
class Layer(core.Layer):
61
    """Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
62

63
    Parameters:
64 65
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
66 67 68
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
69 70 71 72 73 74 75
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
76
    """
X
Xin Pan 已提交
77

78 79
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
        if name_scope is None:
80 81
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
82
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
83
        self._built = False
M
minqiyang 已提交
84
        self._dtype = dtype
85

X
Xin Pan 已提交
86 87
        self._parameters = collections.OrderedDict()
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
88
        self._loaddict_holder = collections.OrderedDict()
89

90 91 92
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
93
    def train(self):
M
minqiyang 已提交
94
        framework._dygraph_tracer().train_mode()
M
minqiyang 已提交
95 96

    def eval(self):
M
minqiyang 已提交
97
        framework._dygraph_tracer().eval_mode()
M
minqiyang 已提交
98

X
Xin Pan 已提交
99
    def full_name(self):
100
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
101

102 103
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
104 105 106
        """
        return self._full_name

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
                  value = np.arange(26).reshape(2, 13).astype("float32")
                  in = fluid.dygraph.to_variable(value0)
                  
                  out0 = linear(in)
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

                  out1 = linear(in)

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

209 210
    def create_parameter(self,
                         shape,
211 212
                         attr=None,
                         dtype='float32',
213 214
                         is_bias=False,
                         default_initializer=None):
215 216 217
        """Create parameters for this layer.
        
        Parameters:
218 219 220
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
221
                If set str, it can be "bool",  "float16", "float32", "float64",
222 223
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
224 225
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
226
                for non-bias and bias parameter, respectively. Default: None.
227

228 229
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
230
        """
H
hong 已提交
231 232 233 234
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
235 236 237 238 239 240 241 242
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
243
        """Create Variable for this layer.
244

245 246 247 248 249 250 251 252
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
253

254 255
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
256 257 258 259 260 261 262 263 264 265
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
266
    def parameters(self, include_sublayers=True):
267
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
268

269 270
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
271

272 273
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
274
        """
275 276 277 278 279
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
280
        return ret
X
Xin Pan 已提交
281

X
Xin Pan 已提交
282 283 284
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

285 286
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
287

288 289
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
290
        """
291 292 293 294 295
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
296 297
        return ret

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

X
Xin Pan 已提交
385
    def clear_gradients(self):
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
410
        for p in self.parameters():
411 412
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
413

414
    def _build_once(self, *args, **kwargs):
415 416
        pass

417
    def __call__(self, *inputs, **kwargs):
418 419 420 421 422 423 424
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
425
        if not self._built:
426 427 428 429 430
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
431
            self._built = True
432

433
        outputs = self.forward(*inputs, **kwargs)
434 435 436 437 438 439

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
440
        return outputs
M
minqiyang 已提交
441

442
    def forward(self, *inputs, **kwargs):
443 444 445 446 447 448 449 450
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
451
        raise NotImplementedError
X
Xin Pan 已提交
452 453 454 455

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
456 457 458
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

459
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
460

461 462 463
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
464
        Returns:
465
            Layer: the sublayer passed in.
X
Xin Pan 已提交
466 467
        """
        assert isinstance(sublayer, core.Layer)
468

X
Xin Pan 已提交
469 470 471 472 473 474
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

475
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
476

477 478 479
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
480
        Returns:
481
            Parameter: the parameter passed in.
X
Xin Pan 已提交
482
        """
483 484 485 486 487 488
        if parameter is None:
            self._parameters[name] = None
        elif not isinstance(parameter, framework.Parameter):
            raise TypeError(
                "parameter assignment requires Parameter or None, but got '{}'"
                .format(type(parameter).__name__))
489

H
hong 已提交
490 491 492 493 494
        if len(self._loaddict_holder) > 0:
            assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                parameter.name)

            parameter.set_value(self._loaddict_holder[parameter.name])
495 496

        self._parameters[name] = parameter
X
Xin Pan 已提交
497 498
        return parameter

X
Xin Pan 已提交
499 500 501 502 503
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
504 505
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
506 507

    def __setattr__(self, name, value):
S
songyouwei 已提交
508 509 510 511 512
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

513 514
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
515
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
516 517 518 519
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
520 521 522 523 524 525
            if len(self._loaddict_holder) > 0:
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

S
songyouwei 已提交
526
            _remove_if_exist(self.__dict__, self._sub_layers)
527
            params[name] = value
528 529 530 531 532 533
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
534
        else:
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

                _remove_if_exist(self.__dict__, self._parameters)
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
                object.__setattr__(self, name, value)
X
Xin Pan 已提交
552 553 554 555 556 557 558 559 560

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
        else:
            object.__delattr__(self, name)

H
hong 已提交
561 562 563 564
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
565
        '''
566
        Get all parameters of current layer and its sub-layers. And set all the parameters into a dict
H
hong 已提交
567

568 569 570
        Parameters:
            destination(dict, optional) : If provide, all the parameters will set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
571 572

        Retruns:
573
            dict: a dict contains all the parameters
H
hong 已提交
574 575

        Examples:
576 577
            .. code-block:: python

H
hong 已提交
578 579
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
580
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
581 582 583 584 585 586

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

587 588 589 590
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
591
                destination[structured_name_prefix + name] = data
592 593 594 595 596 597

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
598 599 600
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
601 602 603
                    destination = destination_temp
        return destination

H
hong 已提交
604 605 606 607
    def set_dict(self,
                 stat_dict,
                 include_sublayers=True,
                 use_structured_name=True):
H
hong 已提交
608
        '''
609
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
610

611 612 613
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
614 615
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key. 
                                                  Default: True
H
hong 已提交
616 617 618 619
        Returns:
            None

        Examples:
620 621
            .. code-block:: python

H
hong 已提交
622 623
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
624
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
625 626 627 628 629 630 631 632 633

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''
H
hong 已提交
634 635 636 637 638 639 640 641 642
        self.load_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)

    def load_dict(self,
                  stat_dict,
                  include_sublayers=True,
                  use_structured_name=True):
H
hong 已提交
643
        '''
644
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
645 646 647

        This api will be Deprecated. Please use set_dict

648 649 650
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
651 652
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
                                                  Default: True
H
hong 已提交
653 654 655 656
        Returns:
            None

        Examples:
657 658
            .. code-block:: python

H
hong 已提交
659 660
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
661
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
662 663 664 665 666 667 668 669 670 671

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

H
hong 已提交
672 673 674 675 676 677
        inner_state_dict = self.state_dict()

        for name, para in inner_state_dict.items():
            key_name = name if use_structured_name else para.name
            if key_name in stat_dict:
                para.set_value(stat_dict[key_name])
H
hong 已提交
678 679
            else:
                raise RuntimeError(
H
hong 已提交
680 681 682 683 684 685 686 687 688 689 690
                    "Parameter not found, Can't not find [ {} ] in stat_dict"
                    "use_structured_name is set to [{}]".format(
                        key_name, use_structured_name))
        unused_para_list = []
        for k, v in stat_dict.items():
            if k not in inner_state_dict:
                unused_para_list.append(k)
        if len(unused_para_list) > 0:
            warnings.warn(
                "Varibale [ {} ] are not used, because not included in layers state_dict".
                format(" ".join(unused_para_list)))