sequence_reshape_op.cc 5.8 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
yangyaming 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_reshape_op.h"
H
hong 已提交
16
#include <memory>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/ddim.h"
Y
yangyaming 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class SequenceReshapeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28 29 30 31 32
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of SequenceReshapeOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument(
            "Output(Out) of SequenceReshapeOp should not be null."));
Y
yangyaming 已提交
33
    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
34
    auto x_numel = product(x_dims);
35 36 37 38
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2U,
        platform::errors::InvalidArgument(
            "Rank of Input(X) should be 2. But received (%d)", x_dims.size()));
Y
yangyaming 已提交
39
    int new_dim = ctx->Attrs().Get<int>("new_dim");
40 41 42 43 44 45
    if (ctx->IsRuntime()) {
      ctx->SetOutputDim("Out",
                        {x_numel / new_dim, static_cast<int64_t>(new_dim)});
    } else {
      // when compiling, the batch size is undetermined, just set to -1
      ctx->SetOutputDim("Out", {-1, static_cast<int64_t>(new_dim)});
46 47 48
      // when compiling, the LodLevel of Out is set to be 1, which is consistent
      // with that in running time.
      ctx->SetLoDLevel("Out", 1);
49
    }
Y
yangyaming 已提交
50 51 52 53 54
  }
};

class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
55
  void Make() override {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with shape "
             "being [N, M].");
    AddOutput("Out",
              "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with "
              "shape [T, new_dim] where T is calculated based on X.lod, M and "
              "new_dim.");
    AddAttr<int>("new_dim", "Sequence dimension of the output LoDTensor.");
    AddComment(R"DOC(
Sequence Reshape Operator.

This operator will rearrange the input sequences. The new dimension is set by
attribute and length of each sequence may change longer or shorter which is
decided by original length, original dimension and new dimension. The following
example will help to illustrate the function of this operator:

x is a LoDTensor:
    x.lod  = [[0, 2, 6]]
Y
yangyaming 已提交
74 75
    x.data = [[1, 2], [3, 4],
              [5, 6], [7, 8], [9, 10], [11, 12]]
76 77 78 79 80
    x.dims = [6, 2]

set new_dim = 4

then out is a LoDTensor:
Y
yangyaming 已提交
81 82 83
    out.lod  = [[0, 1, 3]]
    out.data = [[1, 2, 3, 4],
                [5, 6, 7, 8], [9, 10, 11, 12]]
84 85 86 87 88 89 90
    out.dims = [3, 4]

Currently, only 1-level LoDTensor is supported and please make sure (original
length * original dimension) can be divided by new_dim with no remainder for
each sequence.

)DOC");
Y
yangyaming 已提交
91 92 93 94 95 96 97 98
  }
};

class SequenceReshapeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
99 100 101 102 103 104 105 106
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument(
            "Input(Out@GRAD) of SequenceReshapeGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument(
            "Input(X) of SequenceReshapeGradOp should  not be null."));
Y
yangyaming 已提交
107

108
    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
Y
yangyaming 已提交
109 110 111 112
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
};

H
hong 已提交
113 114
template <typename T>
class SequenceReshapeGradOpMaker : public framework::SingleGradOpMaker<T> {
115
 public:
H
hong 已提交
116
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
117 118

 protected:
119
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
120
    op_desc_ptr->SetType("sequence_reshape_grad");
H
hong 已提交
121 122 123 124 125
    op_desc_ptr->SetInput("X", this->Input("X"));
    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
126 127 128
  }
};

Y
yangyaming 已提交
129 130 131 132 133
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
H
hong 已提交
134 135 136
                  ops::SequenceReshapeOpMaker,
                  ops::SequenceReshapeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequenceReshapeGradOpMaker<paddle::imperative::OpBase>);
Y
yangyaming 已提交
137 138 139
REGISTER_OPERATOR(sequence_reshape_grad, ops::SequenceReshapeGradOp);
REGISTER_OP_CPU_KERNEL(
    sequence_reshape,
Y
yangyaming 已提交
140 141 142 143
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int64_t>);
Y
yangyaming 已提交
144 145
REGISTER_OP_CPU_KERNEL(
    sequence_reshape_grad,
Y
yangyaming 已提交
146 147 148 149
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int>);