checkpoint.py 12.4 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
19
import functools
20
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter, ParamBase, _varbase_creator, _dygraph_tracer
21
import pickle
22
import six
23 24
from . import learning_rate_scheduler
import warnings
H
hong 已提交
25
from .. import core
26
from .base import guard
C
Chen Weihang 已提交
27
from paddle.fluid.dygraph.jit import _SaveLoadConfig
28
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
29

H
hong 已提交
30 31 32 33
__all__ = [
    'save_dygraph',
    'load_dygraph',
]
34 35


C
Chen Weihang 已提交
36 37 38 39 40 41 42 43 44 45 46 47
def _parse_load_config(configs):
    supported_configs = [
        'model_filename', 'params_filename', 'separate_params',
        'keep_name_table'
    ]

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
                % (key))
48

C
Chen Weihang 已提交
49 50 51 52 53 54
    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.separate_params = configs.get('separate_params', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
55

C
Chen Weihang 已提交
56
    return inner_config
57 58


H
hong 已提交
59 60 61
@dygraph_only
def save_dygraph(state_dict, model_path):
    '''
62 63
    :api_attr: imperative

H
hong 已提交
64 65 66 67
    Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams"
    
    The state_dict is get from Layers.state_dict function
    
68
    Args:
H
hong 已提交
69 70
        state_dict(dict) : The state dict to be saved.
        model_path(str) : the file prefix to save the state_dict. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
71 72

    Returns:
L
lujun 已提交
73
        None
74 75

    Examples:
H
hong 已提交
76 77 78 79 80
        .. code-block:: python

            import paddle.fluid as fluid

            with fluid.dygraph.guard():
81
                emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
82 83 84 85

                state_dict = emb.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

86 87
                adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000),
                                             parameter_list = emb.parameters() )
H
hong 已提交
88 89 90 91 92 93 94

                state_dict = adam.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

    '''

    base_name = os.path.basename(model_path)
95
    assert base_name != "", "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received filename is empty string."
H
hong 已提交
96 97 98 99

    suffix = ".pdparams"
    assert len(state_dict) > 0, "state_dict is empty, no need to save"

100
    param_num = 0
H
hong 已提交
101
    for k, v in state_dict.items():
102 103 104 105 106
        if isinstance(v, ParamBase):
            param_num += 1

    if param_num == 0:
        suffix = ".pdopt"
H
hong 已提交
107

H
hong 已提交
108 109 110 111 112
    model_dict = {}
    name_table = {}
    for k, v in state_dict.items():
        if isinstance(v, (Variable, core.VarBase)):
            model_dict[k] = v.numpy()
113
            name_table[k] = v.name
H
hong 已提交
114 115 116 117
        else:
            model_dict[k] = v
    model_dict["StructuredToParameterName@@"] = name_table

118 119 120 121 122 123
    file_name = model_path + suffix
    dir_name = os.path.dirname(file_name)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

    with open(file_name, 'wb') as f:
124
        pickle.dump(model_dict, f, protocol=2)
H
hong 已提交
125 126


127 128
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
129
# @dygraph_only
C
Chen Weihang 已提交
130
def load_dygraph(model_path, **configs):
H
hong 已提交
131
    '''
132 133
    :api_attr: imperative
    
134 135 136 137
    Load parameter state dict from disk.

    .. note::
        Due to some historical reasons, if you load ``state_dict`` from the saved 
138
        result of `paddle.static.save_inference_model`, the structured variable name 
139 140
        will cannot be restored. You need to set the argument `use_structured_name=False` 
        when using `Layer.set_state_dict` later.
H
hong 已提交
141 142

    Args:
143 144
        model_path(str) : The file prefix store the state_dict. 
            (The path should Not contain suffix '.pdparams') 
C
Chen Weihang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
        configs (dict, optional): other save configuration options for compatibility. We do not 
            recommend using these configurations, if not necessary, DO NOT use them. Default None.
            The following options are currently supported:
            (1) model_filename (string): The filename to load the translated program of target Layer.
            Default filename is :code:`__model__` . 
            (2) params_filename (string): The filename to load all persistable variables in target Layer. 
            Default file name is :code:`__variables__` .
            (3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
            If True, each parameter will be loaded from a file separately, the file name is the parameter name,
            and the params_filename configuration will not take effect. Default False.
            (4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in 
            loaded state dict. This dict is the debugging information saved when call ``paddle.fluid.save_dygraph`` . 
            It is generally only used for debugging and does not affect the actual training or inference. 
            By default, it will not be retained in ``paddle.fluid.load_dygraph`` result. Default: False.
H
hong 已提交
159 160 161

    Returns:
        state_dict(dict) : the dict store the state_dict
L
lujun 已提交
162

H
hong 已提交
163
    Examples:
164
        .. code-block:: python
L
lujun 已提交
165

166
            import paddle
167 168
            import paddle.fluid as fluid

169
            paddle.disable_static()
H
hong 已提交
170

171
            emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
172

173
            state_dict = emb.state_dict()
174
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
175

176
            scheduler = paddle.optimizer.lr_scheduler.NoamLR(	
177 178 179 180 181
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            state_dict = adam.state_dict()
182
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
183

184
            para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
185 186
    '''
    # deal with argument `model_path`
187 188 189 190 191 192
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]

193
    para_dict = None
H
hong 已提交
194
    opti_dict = None
195
    params_file_path = model_prefix + ".pdparams"
196
    opti_file_path = model_prefix + ".pdopt"
197

198
    # deal with argument `config`
C
Chen Weihang 已提交
199
    config = _parse_load_config(configs)
200

201
    if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
202
        # Load state dict by `save_dygraph` save format
M
MRXLT 已提交
203
        para_dict = {}
204 205 206 207 208
        if os.path.exists(params_file_path):
            with open(params_file_path, 'rb') as f:
                para_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')

209
        if not config.keep_name_table and "StructuredToParameterName@@" in para_dict:
210 211 212 213 214 215
            del para_dict["StructuredToParameterName@@"]

        if os.path.exists(opti_file_path):
            with open(opti_file_path, 'rb') as f:
                opti_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    else:
        # check model path
        if not os.path.isdir(model_prefix):
            raise ValueError("Model saved directory '%s' is not exists." %
                             model_prefix)

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(model_path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 

            # 1. load program desc & construct _ProgramHolder
            programs = _construct_program_holders(model_path,
                                                  config.model_filename)

            # 2. load layer parameters & buffers
            # NOTE: using fluid.dygraph.guard() here will cause import error in py2
            with guard():
                persistable_var_dict = _construct_params_and_buffers(
                    model_prefix,
                    programs,
                    config.separate_params,
                    config.params_filename,
                    append_suffix=False)

                # 3. construct state_dict
                para_dict = dict()
                for var_name in persistable_var_dict:
                    para_dict[var_name] = persistable_var_dict[var_name].numpy()

                # if __variables.info__ exists, we can recover structured_name
                var_info_path = os.path.join(model_prefix,
                                             EXTRA_VAR_INFO_FILENAME)
                if os.path.exists(var_info_path):
                    with open(var_info_path, 'rb') as f:
                        extra_var_info = pickle.load(f)
                    structured_para_dict = dict()
                    for var_name in para_dict:
                        structured_name = extra_var_info[var_name].get(
                            'structured_name', None)
                        assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                        structured_para_dict[structured_name] = para_dict[
                            var_name]
                    para_dict = structured_para_dict
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
277
            # paddle.static.load_program_state in this case
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

            # Try to load all the files in the directory in VarBase format, 
            # the file name is used as the name of VarBase
            load_var_list = []

            # 1. load file names
            var_name_list = []
            for root, _, files in os.walk(model_path):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    tmp_var_name = os.path.relpath(file_path, model_path)
                    var_name = tmp_var_name.replace("\\", "/")
                    var_name_list.append(var_name)

            # 2. create and load VarBase
            with guard():
                for name in var_name_list:
                    new_var = _varbase_creator(name=name, persistable=True)
                    _dygraph_tracer().trace_op(
                        type='load',
                        inputs={},
                        outputs={'Out': new_var},
                        attrs={'file_path': os.path.join(model_path, name)})
                    load_var_list.append(new_var)

            # 3. construct state_dict
            para_dict = dict()
            for var in load_var_list:
                para_dict[var.name] = var.numpy()
H
hong 已提交
307 308

    return para_dict, opti_dict