detection_map_op.h 16.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
W
wanghaox 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
wanghaox 已提交
18 19 20 21

namespace paddle {
namespace operators {

W
wanghaox 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
enum APType { kNone = 0, kIntegral, k11point };

APType GetAPType(std::string str) {
  if (str == "integral") {
    return APType::kIntegral;
  } else if (str == "11point") {
    return APType::k11point;
  } else {
    return APType::kNone;
  }
}

template <typename T>
inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                                 const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

W
wanghaox 已提交
40 41 42
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
W
wanghaox 已提交
43
  std::stable_sort(in_pairs.begin(), in_pairs.end(), SortScorePairDescend<int>);
W
wanghaox 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
57
    auto* in_detect = ctx.Input<framework::LoDTensor>("DetectRes");
W
wanghaox 已提交
58 59
    auto* in_label = ctx.Input<framework::LoDTensor>("Label");
    auto* out_map = ctx.Output<framework::Tensor>("MAP");
W
wanghaox 已提交
60

W
wanghaox 已提交
61 62 63 64
    auto* in_pos_count = ctx.Input<framework::Tensor>("PosCount");
    auto* in_true_pos = ctx.Input<framework::LoDTensor>("TruePos");
    auto* in_false_pos = ctx.Input<framework::LoDTensor>("FalsePos");

W
wanghaox 已提交
65 66 67
    auto* out_pos_count = ctx.Output<framework::Tensor>("AccumPosCount");
    auto* out_true_pos = ctx.Output<framework::LoDTensor>("AccumTruePos");
    auto* out_false_pos = ctx.Output<framework::LoDTensor>("AccumFalsePos");
W
wanghaox 已提交
68

W
wanghaox 已提交
69 70
    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
    float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
W
wanghaox 已提交
71
    auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
W
wanghaox 已提交
72

W
wanghaox 已提交
73 74
    auto label_lod = in_label->lod();
    auto detect_lod = in_detect->lod();
W
wanghaox 已提交
75 76
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
W
wanghaox 已提交
77 78 79 80 81 82 83 84
    PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
                      "The batch_size of input(Label) and input(Detection) "
                      "must be the same.");

    std::vector<std::map<int, std::vector<Box>>> gt_boxes;
    std::vector<std::map<int, std::vector<std::pair<T, Box>>>> detect_boxes;

    GetBoxes(*in_label, *in_detect, gt_boxes, detect_boxes);
W
wanghaox 已提交
85 86 87 88 89

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

W
wanghaox 已提交
90 91 92 93 94
    if (in_pos_count != nullptr) {
      GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, label_pos_count,
                  true_pos, false_pos);
    }

W
wanghaox 已提交
95 96 97
    CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
                             overlap_threshold, label_pos_count, true_pos,
                             false_pos);
W
wanghaox 已提交
98 99 100

    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos);

W
wanghaox 已提交
101 102 103
    GetOutputPos(ctx, label_pos_count, true_pos, false_pos, *out_pos_count,
                 *out_true_pos, *out_false_pos);

W
wanghaox 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
    map_data[0] = map;
  }

 protected:
  struct Box {
    Box(T xmin, T ymin, T xmax, T ymax)
        : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax), is_difficult(false) {}

    T xmin, ymin, xmax, ymax;
    bool is_difficult;
  };

  inline T JaccardOverlap(const Box& box1, const Box& box2) const {
    if (box2.xmin > box1.xmax || box2.xmax < box1.xmin ||
        box2.ymin > box1.ymax || box2.ymax < box1.ymin) {
      return 0.0;
W
wanghaox 已提交
121
    } else {
W
wanghaox 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134
      T inter_xmin = std::max(box1.xmin, box2.xmin);
      T inter_ymin = std::max(box1.ymin, box2.ymin);
      T inter_xmax = std::min(box1.xmax, box2.xmax);
      T inter_ymax = std::min(box1.ymax, box2.ymax);

      T inter_width = inter_xmax - inter_xmin;
      T inter_height = inter_ymax - inter_ymin;
      T inter_area = inter_width * inter_height;

      T bbox_area1 = (box1.xmax - box1.xmin) * (box1.ymax - box1.ymin);
      T bbox_area2 = (box2.xmax - box2.xmin) * (box2.ymax - box2.ymin);

      return inter_area / (bbox_area1 + bbox_area2 - inter_area);
W
wanghaox 已提交
135 136 137
    }
  }

W
wanghaox 已提交
138 139 140 141 142 143 144
  void GetBoxes(const framework::LoDTensor& input_label,
                const framework::LoDTensor& input_detect,
                std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
                std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
                    detect_boxes) const {
    auto labels = framework::EigenTensor<T, 2>::From(input_label);
    auto detect = framework::EigenTensor<T, 2>::From(input_detect);
W
wanghaox 已提交
145 146

    auto label_lod = input_label.lod();
W
wanghaox 已提交
147 148 149
    auto detect_lod = input_detect.lod();

    int batch_size = label_lod[0].size() - 1;
W
wanghaox 已提交
150 151
    auto label_index = label_lod[0];

W
wanghaox 已提交
152 153
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<Box>> boxes;
W
wanghaox 已提交
154
      for (int i = label_index[n]; i < label_index[n + 1]; ++i) {
W
wanghaox 已提交
155 156 157 158 159 160 161 162
        Box box(labels(i, 2), labels(i, 3), labels(i, 4), labels(i, 5));
        int label = labels(i, 0);
        auto is_difficult = labels(i, 1);
        if (std::abs(is_difficult - 0.0) < 1e-6)
          box.is_difficult = false;
        else
          box.is_difficult = true;
        boxes[label].push_back(box);
W
wanghaox 已提交
163
      }
W
wanghaox 已提交
164
      gt_boxes.push_back(boxes);
W
wanghaox 已提交
165 166
    }

W
wanghaox 已提交
167 168 169 170 171 172 173 174
    auto detect_index = detect_lod[0];
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<std::pair<T, Box>>> boxes;
      for (int i = detect_index[n]; i < detect_index[n + 1]; ++i) {
        Box box(detect(i, 2), detect(i, 3), detect(i, 4), detect(i, 5));
        int label = detect(i, 0);
        auto score = detect(i, 1);
        boxes[label].push_back(std::make_pair(score, box));
W
wanghaox 已提交
175
      }
W
wanghaox 已提交
176
      detect_boxes.push_back(boxes);
W
wanghaox 已提交
177 178 179
    }
  }

W
wanghaox 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  void GetOutputPos(
      const framework::ExecutionContext& ctx,
      const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
      framework::Tensor& output_pos_count,
      framework::LoDTensor& output_true_pos,
      framework::LoDTensor& output_false_pos) const {
    int max_class_id = 0;
    int true_pos_count = 0;
    int false_pos_count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      if (label > max_class_id) max_class_id = label;
      int label_num_pos = it->second;
      if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
        continue;
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      true_pos_count += label_true_pos.size();
      false_pos_count += label_false_pos.size();
    }

    int* pos_count_data = output_pos_count.mutable_data<int>(
        framework::make_ddim({max_class_id + 1, 1}), ctx.GetPlace());
    T* true_pos_data = output_true_pos.mutable_data<T>(
        framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
    T* false_pos_data = output_false_pos.mutable_data<T>(
        framework::make_ddim({false_pos_count, 2}), ctx.GetPlace());
    true_pos_count = 0;
    false_pos_count = 0;
    std::vector<size_t> true_pos_starts = {0};
    std::vector<size_t> false_pos_starts = {0};
    for (int i = 0; i <= max_class_id; ++i) {
      auto it_count = label_pos_count.find(i);
      pos_count_data[i] = 0;
      if (it_count != label_pos_count.end()) {
        pos_count_data[i] = it_count->second;
      }
      auto it_true_pos = true_pos.find(i);
      if (it_true_pos != true_pos.end()) {
        const std::vector<std::pair<T, int>>& true_pos_vec =
            it_true_pos->second;
        for (const std::pair<T, int>& tp : true_pos_vec) {
          true_pos_data[true_pos_count * 2] = tp.first;
          true_pos_data[true_pos_count * 2 + 1] = static_cast<T>(tp.second);
          true_pos_count++;
        }
      }
      true_pos_starts.push_back(true_pos_count);

      auto it_false_pos = false_pos.find(i);
      if (it_false_pos != false_pos.end()) {
        const std::vector<std::pair<T, int>>& false_pos_vec =
            it_false_pos->second;
        for (const std::pair<T, int>& fp : false_pos_vec) {
          false_pos_data[false_pos_count * 2] = fp.first;
          false_pos_data[false_pos_count * 2 + 1] = static_cast<T>(fp.second);
          false_pos_count++;
        }
      }
      false_pos_starts.push_back(false_pos_count);
    }

    framework::LoD true_pos_lod;
    true_pos_lod.emplace_back(true_pos_starts);
    framework::LoD false_pos_lod;
    false_pos_lod.emplace_back(false_pos_starts);

    output_true_pos.set_lod(true_pos_lod);
    output_false_pos.set_lod(false_pos_lod);
    return;
  }

  void GetInputPos(
      const framework::Tensor& input_pos_count,
      const framework::LoDTensor& input_true_pos,
      const framework::LoDTensor& input_false_pos,
      std::map<int, int>& label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int class_number = input_pos_count.dims()[0];
    const int* pos_count_data = input_pos_count.data<int>();
    for (int i = 0; i < class_number; ++i) {
      label_pos_count[i] = pos_count_data[i];
    }

W
wanghaox 已提交
268 269 270 271 272 273 274 275 276 277 278
    auto SetData = [](const framework::LoDTensor& pos_tensor,
                      std::map<int, std::vector<std::pair<T, int>>>& pos) {
      const T* pos_data = pos_tensor.data<T>();
      auto pos_data_lod = pos_tensor.lod();
      for (int i = 0; i < pos_data_lod.size(); ++i) {
        for (int j = pos_data_lod[0][i]; j < pos_data_lod[0][i + 1]; ++j) {
          T score = pos_data[j * 2];
          int flag = 1;
          if (pos_data[j * 2 + 1] < kEPS) flag = 0;
          pos[i].push_back(std::make_pair(score, flag));
        }
W
wanghaox 已提交
279
      }
W
wanghaox 已提交
280 281 282 283
    };

    SetData(input_true_pos, true_pos);
    SetData(input_false_pos, false_pos);
W
wanghaox 已提交
284 285 286
    return;
  }

W
wanghaox 已提交
287
  void CalcTrueAndFalsePositive(
W
wanghaox 已提交
288 289 290 291
      const std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
      const std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
          detect_boxes,
      bool evaluate_difficult, float overlap_threshold,
W
wanghaox 已提交
292 293 294
      std::map<int, int>& label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
W
wanghaox 已提交
295 296 297 298
    int batch_size = gt_boxes.size();
    for (int n = 0; n < batch_size; ++n) {
      auto image_gt_boxes = gt_boxes[n];
      for (auto it = image_gt_boxes.begin(); it != image_gt_boxes.end(); ++it) {
W
wanghaox 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        size_t count = 0;
        auto labeled_bboxes = it->second;
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
          for (size_t i = 0; i < labeled_bboxes.size(); ++i)
            if (!(labeled_bboxes[i].is_difficult)) ++count;
        }
        if (count == 0) {
          continue;
        }
        int label = it->first;
        if (label_pos_count.find(label) == label_pos_count.end()) {
          label_pos_count[label] = count;
        } else {
          label_pos_count[label] += count;
        }
      }
    }

W
wanghaox 已提交
319 320 321
    for (size_t n = 0; n < detect_boxes.size(); ++n) {
      auto image_gt_boxes = gt_boxes[n];
      auto detections = detect_boxes[n];
W
wanghaox 已提交
322

W
wanghaox 已提交
323
      if (image_gt_boxes.size() == 0) {
W
wanghaox 已提交
324
        for (auto it = detections.begin(); it != detections.end(); ++it) {
W
wanghaox 已提交
325
          auto pred_boxes = it->second;
W
wanghaox 已提交
326
          int label = it->first;
W
wanghaox 已提交
327 328
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
W
wanghaox 已提交
329 330 331 332 333 334 335 336 337
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
W
wanghaox 已提交
338 339 340 341
        auto pred_boxes = it->second;
        if (image_gt_boxes.find(label) == image_gt_boxes.end()) {
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
W
wanghaox 已提交
342 343 344 345 346 347
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
          continue;
        }

W
wanghaox 已提交
348
        auto matched_bboxes = image_gt_boxes.find(label)->second;
W
wanghaox 已提交
349 350
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
W
wanghaox 已提交
351 352 353 354
        std::sort(pred_boxes.begin(), pred_boxes.end(),
                  SortScorePairDescend<Box>);
        for (size_t i = 0; i < pred_boxes.size(); ++i) {
          T max_overlap = -1.0;
W
wanghaox 已提交
355
          size_t max_idx = 0;
W
wanghaox 已提交
356
          auto score = pred_boxes[i].first;
W
wanghaox 已提交
357
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
W
wanghaox 已提交
358
            T overlap = JaccardOverlap(pred_boxes[i].second, matched_bboxes[j]);
W
wanghaox 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
                true_pos[label].push_back(std::make_pair(score, 1));
                false_pos[label].push_back(std::make_pair(score, 0));
                visited[max_idx] = true;
              } else {
                true_pos[label].push_back(std::make_pair(score, 0));
                false_pos[label].push_back(std::make_pair(score, 1));
              }
            }
          } else {
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
      }
    }
  }

  T CalcMAP(
W
wanghaox 已提交
388
      APType ap_type, const std::map<int, int>& label_pos_count,
W
wanghaox 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
      if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
        continue;
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
W
wanghaox 已提交
405
      std::vector<T> precision, recall;
W
wanghaox 已提交
406 407 408
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
W
wanghaox 已提交
409 410 411
        precision.push_back(static_cast<T>(tp_sum[i]) /
                            static_cast<T>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<T>(tp_sum[i]) / label_num_pos);
W
wanghaox 已提交
412 413
      }
      // VOC2007 style
W
wanghaox 已提交
414 415
      if (ap_type == APType::k11point) {
        std::vector<T> max_precisions(11, 0.0);
W
wanghaox 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
W
wanghaox 已提交
430
      } else if (ap_type == APType::kIntegral) {
W
wanghaox 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
    return mAP * 100;
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle