quantization_pass.py 118.1 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17 18 19 20
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
21
from ..... import compat as cpt
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
]
W
WangZhen 已提交
48

49 50 51 52 53 54 55 56 57
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

58
_fake_quant_dequant_op_list = [
59 60
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
61 62
]

63 64
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

65
_SCALE_DEFAULT_VALUE = 0.001
66 67


68 69 70 71
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
72
        'The scope cannot be set None.'
73
    assert place is not None, \
74
        'The place cannot be set None.'
75 76 77 78
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


79 80 81 82 83
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
84
    for var_name in utils._get_op_input_var_names(op_node):
85 86 87
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
88 89 90
    return is_input_all_not_persistable


91 92 93 94 95 96 97 98 99 100 101 102 103 104
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


105
class QuantizationTransformPass(object):
106
    """
107 108
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
109
    """
110

W
WangZhen 已提交
111
    def __init__(self,
112
                 scope=None,
113
                 place=None,
W
WangZhen 已提交
114 115 116 117
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
118
                 window_size=10000,
119
                 moving_rate=0.9,
120
                 skip_pattern=['skip_quant'],
121 122 123 124 125 126 127
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
128
        r"""
129
        Constructor.
130

W
WangZhen 已提交
131
        Args:
132
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
133 134
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
135 136 137
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
138
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
139
                the bias is not quantized.
140 141
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
142 143 144 145 146
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
147
            weight_quantize_type(str): quantization type for weights,
148 149 150
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
151 152
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
153
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
154
                will be presented in the name scope of an op. When the skip pattern is
155
                detected in an op's name scope, the corresponding op will not be quantized. 
156
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
157 158
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
186 187
                Default is None.

188

W
WangZhen 已提交
189 190
        Examples:
        .. code-block:: python
191 192 193 194
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
195
            from paddle.fluid.contrib.slim.graph import IrGraph
196 197
            from paddle.fluid import core

198
            graph = IrGraph(core.Graph(program.desc), for_test=False)
199
            place = fluid.CPUPlace()
200
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
201
            place)
202
            transform_pass.apply(graph)
W
WangZhen 已提交
203
        """
204
        self._scope = scope
205
        self._place = _get_paddle_place(place)
206 207
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
208
        self._skip_pattern = skip_pattern
209 210 211 212 213 214
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
215 216 217 218
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
219 220
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
221 222
        if activation_quantize_type not in quant_type:
            raise ValueError(
223 224 225
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
226 227
        if weight_quantize_type not in quant_type:
            raise ValueError(
228
                "Unknown weight_quantize_type: '%s'. It can only be "
229 230
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
231

232 233 234
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
235
        self._moving_rate = moving_rate
W
WangZhen 已提交
236

237 238
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
239
            assert op in utils._weight_supported_quantizable_op_type, \
240
                op + " is not supported for quantization."
241 242
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
243
        ]
244 245
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
246

247 248 249
        self.create_var_map = {}
        self.create_op_map = {}

250
    def apply(self, graph):
251 252 253 254 255 256 257
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
258 259
        Returns:
            None
260
        """
W
WangZhen 已提交
261
        assert isinstance(graph,
262 263
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
264 265
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
266
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
267
        processed_vars = []
W
WangZhen 已提交
268

269
        def _quant_preprocess(op_node):
270 271 272
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
273 274
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
275 276
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
277 278
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
279

280
            if user_skipped:
281
                op_node.op()._set_attr("skip_quant", True)
282
                op_node.op()._set_attr("with_quant_attr", True)
283

W
WangZhen 已提交
284
        def _transform_forward(graph, op):
285
            op.op()._set_attr("quantization_type", "qat_with_weight")
286
            op.op()._set_attr("with_quant_attr", True)
287 288
            inputs = op.inputs
            for var_node in inputs:
289 290
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
291 292 293
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
294 295 296
                    name = var_node.name()
                    if name in processed_vars:
                        continue
297 298
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
299 300

                    # if var node is weight and weight_preprocess_func is not None,
301
                    # will insert weight preprocess func
302
                    # to preorocess weight before quantization
303 304
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
305 306 307 308 309
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
310 311 312
                        var_node = self._insert_func(graph,
                                                     self._act_preprocess_func,
                                                     var_node, op)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
329
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
330
                        else self._activation_bits
331 332
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
333 334
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
335
                            utils._channelwise_quant_axis1_ops else 0
336 337 338 339 340
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
341 342
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
343
                            graph, var_node, name, quant_bits, quant_type)
344 345
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
346
                    dequantized_vars[name] = dequant_var_node
347
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
348 349 350

        def _transform_backward(graph, op):
            for var_node in op.inputs:
351 352
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
353 354
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
355
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
356

X
XGZhang 已提交
357 358 359 360 361 362 363 364 365 366
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

367
        if not self._is_test:
W
WangZhen 已提交
368
            self._create_global_step(graph)
369
        ops = graph.all_op_nodes()
370 371 372 373 374 375
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
376 377
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
378 379
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
380 381 382 383
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
384 385 386 387 388
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
389 390
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
391
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
392
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
393
        graph.resolve_hazard()
394
        return graph
W
WangZhen 已提交
395

W
WangZhen 已提交
396
    def _create_global_step(self, graph):
397 398
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
399
            counter_name = cpt.to_text('@STEP_COUNTER@')
400
            for node in graph.all_var_nodes():
W
WangZhen 已提交
401
                if node.name() == counter_name:
402 403
                    self._global_step = node
            if self._global_step is None:
404
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
405 406 407 408
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
409 410
                _init_var_node(global_step_in, np.zeros([1], dtype='int64'),
                               self._scope, self._place)
W
WangZhen 已提交
411 412
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
413
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
414 415
                increment_op = graph.create_op_node(
                    op_type='increment',
416 417 418 419 420
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
421 422
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
423 424 425
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
426

427
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
428 429 430 431
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
432 433
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
434
        elif quant_type == 'range_abs_max':
435
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
436
                                                       quant_bits)
437
        elif quant_type == 'moving_average_abs_max':
438 439
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
440

441
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
442 443 444 445 446 447
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
448
            name=self._quantized_var_name(name),
449 450 451
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
452
        scale_var_node = graph.create_persistable_node(
453
            name=self._quantized_scale_name(name),
454
            var_type=var_node.type(),
455
            shape=[1],
456
            var_dtype=var_node.dtype())
457 458
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
459 460 461
        _init_var_node(scale_var_node,
                       np.zeros(scale_var_node.shape(), dtype=data_type),
                       self._scope, self._place)
W
WangZhen 已提交
462 463
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
464 465 466 467
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
468
            inputs={'X': var_node},
469 470 471 472
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
473 474 475
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
476 477
        return quant_var_node, scale_var_node

478
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
479 480 481 482 483 484
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
485
            name=self._quantized_var_name(name),
486 487 488
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
489

490
        scale_in_node = graph.create_persistable_node(
491
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
492 493
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
494
            var_dtype=var_node.dtype())
495 496
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
497 498 499
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
W
WangZhen 已提交
500 501 502 503 504

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

505
        if not self._is_test:
W
WangZhen 已提交
506
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
507
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
508 509
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
510
                shape=[self._window_size],
511
                var_dtype=var_node.dtype())
512 513
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
514 515 516
            _init_var_node(scales_node,
                           np.zeros([self._window_size], dtype=data_type),
                           self._scope, self._place)
517

518
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
519 520
            outputs['OutScales'] = scales_node
        attrs = {
521
            'window_size': self._window_size,
W
WangZhen 已提交
522
            'bit_length': quant_bits,
523 524
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
525 526 527 528 529 530 531
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

532 533 534 535
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
536

537 538 539
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
540 541 542

        return quant_var_node, scale_out_node

543
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
544 545 546 547
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
548
            name=self._quantized_var_name(name),
549 550 551 552
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
553
            name=self._quantized_scale_name(name),
554 555 556
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
557 558
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
559 560 561
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
562 563 564 565 566 567 568 569 570 571

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
572 573
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
574 575
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
576 577 578 579 580
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
581 582 583 584 585 586
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

619 620
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
621 622 623 624 625 626
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
627
            name=self._quantized_var_name(name),
628 629 630
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
631
        scale_var_node = graph.create_persistable_node(
632
            name=self._quantized_scale_name(name),
633
            var_type=var_node.type(),
634
            shape=[var_node.shape()[quant_axis]],
635
            var_dtype=var_node.dtype())
636 637
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
638 639 640
        _init_var_node(scale_var_node,
                       np.zeros(scale_var_node.shape(), dtype=data_type),
                       self._scope, self._place)
641 642 643 644
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
645
                'quant_axis': quant_axis,
646
                'is_test': self._is_test,
647 648 649
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
650 651 652 653
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
654 655 656 657 658
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
659 660 661 662 663 664 665 666
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
667 668 669
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
670 671 672
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
673 674 675 676
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
677 678 679 680
            inputs={
                'X': var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
681
            outputs={'Out': dequant_var_node})
682 683 684
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
685 686
        return dequant_var_node

687
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
688
                                   quant_bits, quant_axis):
689 690 691 692 693 694 695 696 697 698 699 700 701 702
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
703
                'quant_axis': quant_axis,
704 705
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
706 707 708 709
            inputs={
                'X': var_node,
                'Scales': scale_var_nodes
            },
710 711 712 713 714 715 716
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
797 798 799
                in_node = data(var_node.name() + '_tmp_input',
                               shape=var_node.shape(),
                               dtype='float32')
800
                out_node = func(in_node)
801
                graph.out_node_mapping_table[out_node.name] = var_node.name()
802 803 804 805 806 807 808 809 810 811
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

812 813
        tmp_graph = IrGraph(core.Graph(tmp_program.desc),
                            for_test=graph._for_test)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
854 855
                graph.all_var_nodes(),
                target_out_node.name() + "@GRAD")
856
            in_node_grad = graph._find_node_by_name(
857 858
                graph.all_var_nodes(),
                target_in_node.name() + "@GRAD")
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
907
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
908 909
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
910

911
    def _is_skip_quant(self, graph, op_node):
912 913 914 915 916 917 918 919 920 921 922 923
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
924 925 926
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
927 928
        return is_skip

W
WangZhen 已提交
929 930

class QuantizationFreezePass(object):
931

W
WangZhen 已提交
932 933 934
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
935
                 bias_correction=False,
W
WangZhen 已提交
936 937
                 weight_bits=8,
                 activation_bits=8,
938
                 round_type='round',
939
                 weight_quantize_type='abs_max',
940
                 quantizable_op_type=None):
941 942
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
943
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
944
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
945 946
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
947 948 949

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
950 951
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
952 953
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
954 955
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
956
            round_type(str, optional): The method of converting the quantized weights
957 958 959
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
960 961 962
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
963 964
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
965
        """
W
WangZhen 已提交
966 967 968 969 970
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
971
        self._bias_correction = bias_correction
972
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
973 974
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
975
        self._round_type = round_type
W
WangZhen 已提交
976
        self._weight_quantize_type = weight_quantize_type
977 978
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
979 980
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
981
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
982 983

    def apply(self, graph):
984 985 986 987 988
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
989 990
        Returns:
            None
991
        """
992
        # Get input scales in fake quant op and process weights
993 994
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
995 996 997
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
998
                input_arg_name = op_node.input('X')[0]
999 1000 1001 1002
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1003 1004
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1005 1006
                        op_node.outputs,
                        op_node.output('OutScale')[0])
1007 1008 1009 1010 1011 1012 1013 1014 1015
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1016
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1017
                        scale_v = scale_v[0]
W
WangZhen 已提交
1018
                    else:
1019
                        scale_v = scale_v.tolist()
1020
                    self._quant_var_scale_map[input_arg_name] = scale_v
1021
                    # Quantize weight and restore
1022
                    if self._round_type == 'round':
1023
                        param_v = self._load_var(input_arg_name)
1024 1025
                        if any(
                                _check_grandchild_op_node(op_node, op)
1026
                                for op in utils._channelwise_quant_axis1_ops):
1027 1028 1029
                            quant_axis = 1
                        else:
                            quant_axis = 0
1030 1031 1032
                        quantized_param_v = utils.quant_tensor(
                            param_v.copy(), scale_v, quant_axis,
                            self._weight_bits)
1033
                        quantized_param_v = np.round(quantized_param_v)
1034
                        # Weight bias correction
1035
                        if self._bias_correction == True:
1036 1037 1038 1039 1040 1041
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
                                weight_bits=self._weight_bits)
1042 1043
                            quantized_param_v = np.round(quantized_param_v)
                        self._restore_var(input_arg_name, quantized_param_v)
1044
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1045

1046
        # Remove all fake dequant op
1047
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1048 1049 1050 1051 1052
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1053
        # Insert post dequant op
1054
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1055
        for op_node in ops:
1056 1057 1058
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1059
                if self._weight_quantize_type == 'channel_wise_abs_max':
1060
                    quant_axis = 1 if op_node.name() in \
1061
                        utils._channelwise_quant_axis1_ops else 0
1062 1063
                    self._insert_post_channel_dequant_op(
                        graph, op_node, quant_axis)
1064 1065
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1066

1067
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1068 1069
        for op_node in ops:
            for var_node in op_node.inputs:
1070 1071 1072
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1073 1074 1075 1076
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1077
        graph.resolve_hazard()
1078
        return graph
W
WangZhen 已提交
1079 1080

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1081 1082
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1083 1084
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1085
        else:
1086 1087
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1088
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1089

1090
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1091 1092 1093
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1094 1095 1096 1097 1098
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1099 1100 1101
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1102
            scale_v = self._quant_var_scale_map[original_var_name]
1103 1104 1105 1106 1107 1108 1109 1110
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1111
                scale_var_node = self._quant_var_scale_map[original_var_name]
1112

1113
        if len(op_node.output_arg_names()) != 1:
1114 1115 1116
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1117
        output_var_node = graph._find_node_by_name(
1118 1119
            op_node.outputs,
            op_node.output_arg_names()[0])
1120 1121 1122 1123 1124
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1125 1126
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1127 1128
        _init_var_node(weight_scale_node, channel_scale.astype(data_type),
                       self._scope, self._place)
1129 1130 1131 1132 1133
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1134 1135 1136
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1137 1138
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1139 1140 1141 1142
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1143
                'quant_axis': quant_axis,
1144 1145
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1156
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1157 1158
        return dequant_var_node

W
WangZhen 已提交
1159
    def _insert_post_dequant_op(self, graph, op_node):
1160
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1161 1162 1163
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1164
        for var_node in op_node.inputs:
W
WangZhen 已提交
1165
            name = var_node.name()
1166 1167 1168 1169 1170
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1171
                new_in.clear_outputs()
W
WangZhen 已提交
1172 1173
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1174
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1175 1176 1177 1178
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1179
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1180
                max_range *= param_range / scale_v
W
WangZhen 已提交
1181
            else:
1182
                max_range *= act_range
1183
                assert isinstance(scale_v, IrNode)
1184
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1185

1186
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1187 1188 1189
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1190
        output_var_node = graph._find_node_by_name(
1191 1192
            op_node.outputs,
            op_node.output_arg_names()[0])
W
WangZhen 已提交
1193 1194
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1195 1196 1197
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1198 1199
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1200 1201 1202 1203
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
1204 1205 1206 1207
            inputs={
                'X': output_var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
1208 1209 1210 1211
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1212
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1213 1214 1215 1216 1217
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1218 1219 1220
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1221 1222 1223

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1224
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1225 1226 1227 1228 1229 1230
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1231 1232 1233 1234 1235 1236
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1260
    def _is_float(self, v):
W
WangZhen 已提交
1261 1262 1263
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1264 1265

class ConvertToInt8Pass(object):
1266

1267
    def __init__(self, scope, place, quantizable_op_type=None):
1268 1269 1270 1271 1272
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1273 1274 1275
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1276 1277
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1278
        """
1279 1280 1281 1282 1283
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1284
        self._place = _get_paddle_place(place)
1285 1286

    def apply(self, graph):
1287
        """
T
tianshuo78520a 已提交
1288 1289
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1290 1291 1292

        Args:
            graph(IrGraph): the applied graph.
1293 1294
        Returns:
            None
1295
        """
1296 1297
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1298 1299
        input_map = {}
        for op_node in ops:
1300 1301
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1302 1303 1304 1305
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1306 1307
                            int8_var_node = self._convert_to_int8(
                                graph, var_node)
1308 1309 1310 1311 1312 1313
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1314
        graph.resolve_hazard()
1315 1316 1317 1318
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1319
        int8_var_node = graph.create_persistable_node(
1320
            name=cpt.to_text(int8_var_node_name),
1321 1322
            var_type=var_node.type(),
            shape=var_node.shape(),
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1338
        ops = graph.all_op_nodes()
1339 1340 1341 1342 1343 1344
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1345 1346 1347 1348 1349 1350
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1351 1352 1353 1354
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
1355

1356
    def __init__(self):
1357
        """
T
tianshuo78520a 已提交
1358
        This pass is used to convert the frozen graph for paddle-mobile execution.
1359
        """
1360 1361
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1362 1363

    def apply(self, graph):
1364 1365 1366 1367 1368 1369 1370
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1371 1372
        Returns:
            None
1373
        """
1374
        ops = graph.all_op_nodes()
1375 1376 1377
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1378
                op_node.set_type('quantize')
1379 1380 1381 1382 1383 1384 1385
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1386
                op_node.set_type('dequantize')
1387 1388 1389 1390 1391 1392
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1393
        graph.resolve_hazard()
1394
        return graph
1395 1396


1397
class OutScaleForTrainingPass(object):
1398

1399 1400 1401 1402 1403 1404 1405
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1406 1407 1408
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1409 1410 1411
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1412
        self._place = _get_paddle_place(place)
1413 1414
        self._moving_rate = moving_rate
        self._is_test = None
1415
        self._teller_set = utils._out_scale_op_list
1416 1417 1418 1419 1420 1421 1422 1423 1424

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1425 1426
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1427
        self._is_test = graph.is_test()
1428 1429 1430 1431
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1432 1433 1434
        with tqdm(total=len(target_ops),
                  bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
1435 1436 1437 1438 1439 1440 1441
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
                    in_node = graph._find_node_by_name(op.outputs,
                                                       output_var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
1442

1443 1444
                    scale_node = graph.create_persistable_node(
                        name=self._scale_name(in_node.name()),
1445
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
1446 1447 1448 1449
                        shape=[1],
                        var_dtype=in_node.dtype())
                    data_type = 'float64' if in_node.dtype() \
                        == core.VarDesc.VarType.FP64 else 'float32'
1450 1451
                    _init_var_node(scale_node, np.ones([1], dtype=data_type),
                                   self._scope, self._place)
1452 1453 1454 1455 1456 1457 1458 1459
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
1460 1461 1462
                        _init_var_node(state_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
1463 1464 1465 1466 1467
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
1468 1469 1470
                        _init_var_node(accum_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
                        state_out_node = graph.create_var_node_from_desc(
                            state_in_node.var())
                        accum_out_node = graph.create_var_node_from_desc(
                            accum_in_node.var())

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
                        outputs=outs)
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1500 1501 1502 1503 1504 1505
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1506
        return "%s@scale" % (var_name)
1507 1508


1509
class OutScaleForInferencePass(object):
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1520
        self._teller_set = utils._out_scale_op_list
1521 1522 1523 1524 1525 1526 1527 1528 1529

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1530 1531
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1532 1533 1534
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1535
                var_names = utils._get_op_output_var_names(op_node)
1536
                for var_name in var_names:
1537 1538 1539 1540 1541 1542
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1543
                    scale_name = self._scale_name(var_name)
1544 1545 1546 1547 1548 1549 1550
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1551

1552 1553
                    argname_index = utils._get_output_name_index(
                        op_node, var_name)
1554 1555 1556
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1557
                        + "_threshold", float(scale_value))
1558
                    op_node.op()._set_attr("with_quant_attr", True)
1559 1560 1561 1562 1563 1564 1565
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1566
        return "%s@scale" % (var_name)
1567 1568 1569


class AddQuantDequantPass(object):
1570 1571 1572 1573
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1574

1575 1576 1577
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1578 1579 1580 1581 1582
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1583
                 skip_pattern=["skip_quant"],
1584
                 quantizable_op_type=["elementwise_add", "pool2d"],
1585
                 is_full_quantized=False):
1586
        """
1587
        Constructor.
1588 1589 1590

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1591 1592 1593
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1594 1595 1596 1597 1598 1599 1600 1601
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1602
                quantized. Default is ["elementwise_add", "pool2d"]. 
1603 1604 1605 1606
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1607 1608
        """
        self._scope = scope
1609
        self._place = _get_paddle_place(place)
1610 1611 1612
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1613
        self._skip_pattern = skip_pattern
1614 1615

        if is_full_quantized:
1616
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1617 1618 1619
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1620
                assert op_type in utils._act_supported_quantizable_op_type, \
1621
                    op_type + " is not supported for quantization."
1622 1623 1624 1625
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1626 1627
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1628 1629 1630

    def apply(self, graph):
        """
1631 1632
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1633

1634 1635
        Args:
            graph(IrGraph): the target graph.
1636 1637
        Returns:
            None
1638 1639 1640 1641
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1642 1643
        dequantized_vars_map = collections.OrderedDict()

1644 1645
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1646 1647 1648 1649
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized or \
                        (not _is_input_all_not_persistable(graph, op_node)):
                        continue
1664

1665 1666 1667 1668 1669 1670
                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
1671 1672
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
            t.update()
1683

1684 1685
        # Backward stage, update input link
        for op_node in all_op_nodes:
1686
            if op_node.name() in self._quantizable_grad_op_type:
1687 1688
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1689 1690
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
1691 1692 1693 1694
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1695 1696 1697 1698 1699 1700 1701
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
1702 1703 1704 1705 1706
        quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1707 1708 1709 1710 1711 1712 1713
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1714 1715 1716
        _init_var_node(scale_in_node,
                       np.array([_SCALE_DEFAULT_VALUE], dtype=data_type),
                       self._scope, self._place)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
1729 1730
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
1731 1732 1733 1734 1735
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
1736 1737 1738 1739 1740 1741
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
        is_test(bool, optional): Whether quantization with training or not. Default is True.
    """

    def __init__(self,
                 place,
                 scope,
                 quant_bits=8,
                 quant_axis=-1,
                 channel_wise=False,
                 is_test=True):
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test

    def insert_quant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

1808 1809 1810 1811 1812
        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
            init_scale_value = np.zeros(scale_var_shape, dtype=data_type)
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
        scale_var_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=scale_var_type,
            shape=[scale_var_shape],
            var_dtype=var_node.dtype())
        _init_var_node(scale_var_node, init_scale_value, self._scope,
                       self._place)

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1838 1839 1840
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
        outputs = {"Y": quant_var_node}
        if not self._is_test:
            attrs["is_test"] = self._is_test
            attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1851 1852
            scale_out_node = graph.create_var_node_from_desc(
                scale_var_node.var())
1853 1854
            outputs["OutScale"] = scale_out_node

1855 1856 1857 1858
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1885 1886 1887
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1888 1889 1890 1891 1892 1893 1894 1895 1896

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
        if not self._is_test:
            attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

1897 1898 1899 1900
        quant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs={"Y": dequant_var_node})
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
        return "%s.scale" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantizationTransformPassV2(object):
    """
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
    """

    def __init__(self,
                 scope=None,
                 place=None,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000,
                 moving_rate=0.9,
                 skip_pattern=['skip_quant'],
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized. 
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
            assert op in utils._weight_supported_quantizable_op_type, \
                op + " is not supported for quantization."
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
        self._is_test = None
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            any(pattern in op_node.op().attr("op_namescope") \
                                for pattern in self._skip_pattern)
        elif isinstance(self._skip_pattern, str):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            op_node.op().attr("op_namescope").find(
                                self._skip_pattern) != -1

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
                is_weight = True if var_node.name() in self.persistable_vars \
                    else False

                # if var node is weight and weight_preprocess_func is not None,
2112
                # will insert weight preprocess func
2113
                # to preorocess weight before quantization
2114 2115
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2116 2117
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2118 2119 2120
                    var_node = self._insert_func(graph,
                                                 self._weight_preprocess_func,
                                                 var_node, op)
2121
                elif not is_weight and self._act_preprocess_func is not None:
2122 2123 2124
                    var_node = self._insert_func(graph,
                                                 self._act_preprocess_func,
                                                 var_node, op)
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
                        graph, self._weight_quantize_func, var_node, op)
                    processed_vars.append(name)
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2136 2137 2138
                    target_out_node = self._insert_func(graph,
                                                        self._act_quantize_func,
                                                        var_node, op)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
                    processed_vars.append(name)
                    continue

                quant_bits = self._weight_bits if var_node.name() in self.persistable_vars \
                    else self._activation_bits
                quant_type = self._weight_quantize_type if is_weight \
                    else self._activation_quantize_type
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
                    quant_axis = 1 if op.name() in \
                        utils._channelwise_quant_axis1_ops else 0
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
                    is_test=self._is_test)
                quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                    graph, var_node)
                dequant_var_node = insert_quant_pass.insert_dequant_op(
                    graph, quant_var_node, scale_var_node)

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def _is_skip_quant(self, graph, op_node):
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPassV2 to quantize them.
        if op_node.name() in ["mul", "matmul", "matmul_v2"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
        return is_skip

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2233 2234 2235 2236
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
2237 2238 2239 2240 2241 2242
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph,
                                               op) and self._has_weight(op):
                        self._transform_forward(graph, op)
                t.update()
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
    op for the quantized ops's inputs.
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern=["skip_quant"],
                 quantizable_op_type=["elementwise_add", "pool2d"],
                 is_full_quantized=False):
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
                quantized. Default is ["elementwise_add", "pool2d"]. 
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
        self._skip_pattern = skip_pattern

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in utils._act_supported_quantizable_op_type, \
                    op_type + " is not supported for quantization."
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2345 2346 2347 2348
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized:
2361
                        continue
2362 2363 2364 2365 2366

                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
2367 2368
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
                                is_test=self._is_test)
                            quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                                graph, in_node)
                            dequant_var_node = insert_quant_pass.insert_dequant_op(
                                graph, quant_var_node, scale_var_node)
                            dequantized_vars_map[arg_name] = dequant_var_node
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)
                t.update()
2389 2390 2391 2392 2393 2394

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2395 2396
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

    def __init__(self, scope, place):
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
        
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
            if op.name() in _fake_quant_dequant_op_list:
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
        scale_node = graph._find_node_by_name(op.outputs,
                                              op.output("OutScale")[0])

        quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
            "quant_axis") else -1
        bit_length = op.op().attr("bit_length") if op.op().has_attr(
            "bit_length") else 8

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
            _init_var_node(zero_point_node,
                           np.zeros(scale_node.shape(), dtype="int32"),
                           self._scope, self._place)

        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            x_node.name()),
                                               var_type=x_node.type(),
                                               shape=x_node.shape(),
                                               var_dtype=x_node.dtype())
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs={
                                                 "quant_axis": quant_axis,
                                                 "bit_length": bit_length
                                             },
                                             inputs={
                                                 "X": x_node,
                                                 "Scale": scale_node,
                                                 "ZeroPoint": zero_point_node
                                             },
                                             outputs={"Y": quant_var_node})
2492 2493 2494 2495 2496
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs={
                                                   "quant_axis": quant_axis,
                                                   "bit_length": bit_length
                                               },
                                               inputs={
                                                   "X": quant_var_node,
                                                   "Scale": scale_node,
                                                   "ZeroPoint": zero_point_node
                                               },
                                               outputs={"Y": out_node})
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
    
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

    def __init__(self,
                 scope,
                 place,
                 bias_correction=False,
                 quant_bits=8,
                 save_int_weight=True):
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
                scale_node = graph._find_node_by_name(_op.inputs,
                                                      _op.input("Scale")[0])
                zero_point_node = graph._find_node_by_name(
2586 2587
                    _op.inputs,
                    _op.input("ZeroPoint")[0])
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
                out_node = graph._find_node_by_name(_op.outputs,
                                                    _op.output("Y")[0])

                scale_v = self._load_var(scale_node.name())
                assert scale_v.ndim in [1, 2
                                        ], "the dim of scale_v should be 1 or 2"
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
2603 2604 2605 2606 2607
                quantized_param_v = utils.quant_tensor(param_v.copy(),
                                                       scale_v,
                                                       quant_axis,
                                                       bits_length,
                                                       onnx_format=True)
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
                        weight_bits=bits_length)
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
                        save_weight_dtype)
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)