optimizer.py 38.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import six
import logging
from collections import defaultdict

22
import paddle
M
MRXLT 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard

from ..fluid import framework
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
from ..fluid.clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
from ..fluid.framework import program_guard
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
from ..fluid.layers import ops
from ..fluid.regularizer import append_regularization_ops
from ..fluid.dygraph import base as imperative_base
from ..fluid.dygraph import no_grad
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
from ..fluid.wrapped_decorator import signature_safe_contextmanager
from .. import compat as cpt
43
from .lr import LRScheduler
M
MRXLT 已提交
44 45 46


class Optimizer(object):
47
    r"""Optimizer Base class.
M
MRXLT 已提交
48 49 50 51 52 53

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
54 55
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
M
MRXLT 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
       Base class for optimizer. 
    
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
83
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
84 85 86 87 88 89 90 91 92 93
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

    """

94
    @imperative_base.no_grad
M
MRXLT 已提交
95 96 97 98 99 100
    def __init__(self,
                 learning_rate,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None):
101 102 103 104 105 106 107 108 109 110 111 112 113
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
            if isinstance(parameters, paddle.Tensor):
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
                    "an iterable of paddle Tensors, but got argument type is `{}`.".
                    format(type(parameters)))
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
114 115 116 117 118 119 120 121
        self._name = name
        if framework.in_dygraph_mode():
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
                for param in self._parameter_list:
122 123
                    if hasattr(param,
                               'regularizer') and param.regularizer is not None:
M
MRXLT 已提交
124 125 126 127 128
                        logging.info(
                            "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                            "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % weight_decay.__str__())
                        break
129
        if not isinstance(learning_rate, (float, LRScheduler)):
130
            raise TypeError(
131
                "learning rate should be float or LRScheduler, got %s here" %
132
                type(learning_rate))
M
MRXLT 已提交
133 134 135 136 137 138 139 140 141 142 143 144
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
145

M
MRXLT 已提交
146
        self._dtype = None
L
Leo Chen 已提交
147 148 149 150
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

M
MRXLT 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad

    @framework.dygraph_only
    def state_dict(self):
        '''
168
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
169 170 171 172 173 174 175 176 177 178 179 180
        If the optimizer never be called(minimize function), the state_dict is empty.

        Args: 
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
        
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
181
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
182 183 184 185 186 187 188 189 190 191

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
192
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
193 194 195 196 197 198
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
199
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
200 201 202 203 204 205 206 207 208 209 210

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python

                import paddle

211
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
212

213 214
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
215

216 217 218 219 220 221 222
                scheduler = paddle.optimizer.lr.NoamDecay(	
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
223

224
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
225 226 227
                adam.set_state_dict(opti_state_dict)

        '''
228
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
229
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
230

231
        if isinstance(self._learning_rate, LRScheduler):
232
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer Tensor {} not found".format( var_tmp.name )
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
269
        if isinstance(self._learning_rate, LRScheduler):
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=paddle.get_default_dtype()
                    if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
285

M
MRXLT 已提交
286
                self._learning_rate_map[framework.default_main_program(
287
                )] = lr_var
M
MRXLT 已提交
288

289 290 291 292 293 294
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
295 296 297
            if isinstance(lr, framework.Variable):
                return
            else:
298 299 300 301 302 303 304 305
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype=paddle.get_default_dtype()
                    if self._dtype is None else self._dtype,
                    persistable=True)
M
MRXLT 已提交
306 307 308 309 310 311

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
312
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
313 314 315
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
316
            value (float): the value of learning rate
M
MRXLT 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
343
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
344
            raise TypeError(
345
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
M
MRXLT 已提交
346
                % (type(value)))
347
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
348
            raise RuntimeError(
349
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
350
            )
351 352 353 354 355 356 357 358 359 360 361 362 363
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
            global_block = framework.default_main_program().global_block()
            global_block.append_op(
                type='fill_constant',
                outputs={'Out': [current_lr]},
                attrs={
                    'dtype': current_lr.dtype,
                    'shape': list(current_lr.shape),
                    'value': float(value)
                },
                stop_gradient=True)
M
MRXLT 已提交
364 365 366

    def get_lr(self):
        """
367 368 369
        Get current learning rate of optimizer. 
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
370

M
MRXLT 已提交
371
        Returns:
372
            float: The current learning rate of optimizer.
M
MRXLT 已提交
373 374 375 376

        Examples:
            .. code-block:: python

377
                # train on default dynamic graph mode
M
MRXLT 已提交
378
                import paddle
379 380 381 382 383 384 385 386 387 388 389
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
390

391 392 393 394 395 396 397 398
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
399
                    adam.step()
400
                    scheduler.step()
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
420 421 422 423 424

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
425
            return self._learning_rate()
M
MRXLT 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
446 447 448 449
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
450
            else:
451 452 453 454 455 456 457 458 459
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
                            is_with_opt=True), framework.name_scope(
                                'scale_with_param_lr'):
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None,
                         type=None,
                         device=None):
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
            if framework.in_dygraph_mode():
                return self._accumulators[name][param.name]
            raise Exception("Accumulator {} already exists for parameter {}".
                            format(name, param.name))
        if shape == None:
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
            type=param.type if type is None else type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
558
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

    def _create_optimization_pass(self, parameters_and_grads):
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._update_param_device_map(parameters_and_grads, target_block)
        self._create_accumulators(
            target_block,
614
            [p[0] for p in parameters_and_grads if not p[0].stop_gradient])
M
MRXLT 已提交
615 616 617 618 619 620
        self._create_global_learning_rate()

        if framework.in_dygraph_mode():
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
621
                if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
622 623 624 625 626 627 628
                    self._append_optimize_op(target_block, param_and_grad)
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
629
                    if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

    def backward(self,
                 loss,
                 startup_program=None,
                 parameters=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
680
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
        if framework.in_dygraph_mode():
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
695 696 697 698
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

M
MRXLT 已提交
699
        if framework.in_dygraph_mode():
700 701 702
            parameter_list = parameters if parameters \
                else self._parameter_list

M
MRXLT 已提交
703
            params_grads = []
704
            for param in parameter_list:
705
                if param.stop_gradient:
M
MRXLT 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
                    continue
                if param._grad_ivar() is not None:
                    # create gradient tensor
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call paddle.mean to process the current loss.".format(
                    loss.shape)
            parameter_list = parameters if parameters \
                else self._parameter_list
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
                                               act_no_grad_set, callbacks)
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np

                inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                linear = paddle.nn.Linear(10, 10)
                inp = paddle.to_tensor(inp)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

    def _apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
        if framework.in_dygraph_mode():
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
805 806 807
        param_no_trainable = set([
            param.name for param in parameters if param.stop_gradient is True
        ])
M
MRXLT 已提交
808 809 810 811 812 813 814 815 816
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
    def clear_grad(self):
        """
        Clear the gradients of all optimized parameters for model.
817 818

        If not, new gradient will accumulat on previous gradient.
M
MRXLT 已提交
819 820 821 822 823 824 825 826 827
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
828

M
MRXLT 已提交
829 830
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
831
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
832 833 834 835 836 837 838 839 840 841
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
        for p in self._parameter_list:
842
            if not p.stop_gradient:
M
MRXLT 已提交
843 844
                p.clear_gradient()

845
    @imperative_base.no_grad
M
MRXLT 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameters=None,
                 no_grad_set=None):
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
M
MRXLT 已提交
869
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
M
MRXLT 已提交
870 871 872 873 874
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
M
MRXLT 已提交
875
 
M
MRXLT 已提交
876
                import paddle
M
MRXLT 已提交
877
                linear = paddle.nn.Linear(10, 10)
878 879
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
880 881 882 883 884 885 886 887 888 889 890 891
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
                out.backward()
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
892 893 894 895 896
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

        parameter_list = parameters if parameters \
            else self._parameter_list
897

M
MRXLT 已提交
898 899 900 901 902 903 904 905 906 907 908
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads

L
Leo Chen 已提交
909
    @imperative_base.no_grad
M
MRXLT 已提交
910 911 912
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
913
        Execute the optimizer and update parameters once.
M
MRXLT 已提交
914 915 916 917 918 919 920 921 922
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
923

M
MRXLT 已提交
924 925
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
926
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
927 928 929 930 931 932 933 934 935 936
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        params_grads = []
        for param in self._parameter_list:
937
            if param.stop_gradient:
M
MRXLT 已提交
938 939 940 941 942
                continue
            if param._grad_ivar() is not None:
                grad_var = param._grad_ivar()
                params_grads.append((param, grad_var))

943
        self._apply_optimize(
M
MRXLT 已提交
944
            loss=None, startup_program=None, params_grads=params_grads)