test_dist_base.py 34.3 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20 21 22
import time

import unittest
import os
import sys
import signal
import subprocess
23
import six
W
Wu Yi 已提交
24
import argparse
W
Wu Yi 已提交
25 26
import pickle
import numpy as np
27
import time
28
import paddle.fluid as fluid
29
from paddle.fluid import compiler
30 31 32
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
33

34 35 36
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
37
RUN_STEP = 5
38
DEFAULT_BATCH_SIZE = 2
39

T
typhoonzero 已提交
40

41 42 43 44 45 46 47 48
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
49 50
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
51
    if six.PY2:
52
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
53
    else:
54
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
61
class TestDistRunnerBase(object):
W
Wu Yi 已提交
62 63 64
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
65 66
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

W
Wu Yi 已提交
99
    def run_pserver(self, args):
W
Wu Yi 已提交
100
        self.lr = args.lr
101
        self.get_model(batch_size=args.batch_size)
102
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
103 104 105 106 107 108 109 110 111

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
112 113 114
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
115

T
typhoonzero 已提交
116 117 118
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
119
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
120
        exe.run(pserver_prog)
121
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
122

123 124 125 126 127 128 129 130 131 132
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
133
        dist_strategy.fuse_memory_size = 1  # MB
134
        dist_strategy.fuse_laryer_size = 1
135 136 137 138
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
139 140 141

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
142
        print_to_err("gpu_fleet", "fleet.node_num:")
T
tangwei12 已提交
143 144
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
145 146

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
147
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

178
        print_to_err(type(self).__name__, "begin to train on trainer")
179 180 181 182 183 184
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
185 186
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
187 188 189 190 191 192

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

193
    def run_trainer(self, args):
W
Wu Yi 已提交
194
        self.lr = args.lr
W
Wu Yi 已提交
195 196 197
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
198 199 200
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
201 202 203
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
204

W
Wu Yi 已提交
205
        if args.update_method == "pserver":
206
            print_to_err(
207 208
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
209 210 211 212 213 214 215 216 217
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
218
            trainer_prog = t.get_trainer_program()
219
            print_to_err(
220 221
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
222
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
223 224 225
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
226
            config.nccl_comm_num = args.nccl_comm_num
227 228 229
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
230
            print_to_err(
231 232
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
233 234 235 236 237 238 239
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
240
            print_to_err(
241 242
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
243
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
244
        else:
245
            print_to_err(
246 247
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
248
            trainer_prog = fluid.default_main_program()
249
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
250

251
        if args.use_cuda:
252 253
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
254 255 256
        else:
            place = fluid.CPUPlace()

257 258
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
259
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
260

W
Wu Yi 已提交
261 262
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
263

W
Wu Yi 已提交
264
        build_stra = fluid.BuildStrategy()
265 266 267
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
268

T
tangwei12 已提交
269 270 271
        if args.hogwild:
            build_stra.async_mode = True

272 273 274
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
275 276 277 278 279
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
280
        pass_builder = None
X
Xin Pan 已提交
281
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
282
            pass_builder = build_stra._finalize_strategy_and_create_passes()
283
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
284
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
285

W
Wu Yi 已提交
286
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
287 288
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
289
        else:
W
Wu Yi 已提交
290
            # case args.update_method == "nccl2_reduce_layer":
291 292
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
293

294 295 296 297
        if args.use_dgc:
            # fuse_all_reduce_ops require that gradients should not be sparse types
            build_stra.fuse_all_reduce_ops = False

298
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
299
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
300
            loss_name=avg_cost.name,
W
Wu Yi 已提交
301
            build_strategy=build_stra,
W
Wu Yi 已提交
302
            exec_strategy=exec_strategy)
303
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
304 305 306 307 308 309 310

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
311
        reader_generator = train_reader()
T
typhoonzero 已提交
312

313 314
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
315
            if args.update_method != "local" and args.use_reader_alloc:
316 317 318 319 320 321 322
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
323

324
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
325
        out_losses = []
326
        for i in six.moves.xrange(RUN_STEP):
327 328
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
329
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
330
            out_losses.append(loss[0])
331 332
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
333

334
        print_to_out(out_losses)
T
typhoonzero 已提交
335 336


337 338 339 340 341 342 343 344 345 346
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

    def run_trainer(self, args):
Y
Yan Xu 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        seed = 90
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        def _get_data(batch):
            if args.update_method != "local":
                new_batch = []
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return batch

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
365 366 367
            np.random.seed(seed)
            import random
            random.seed = seed
368 369
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
370

371 372 373 374 375 376
            if args.update_method == "nccl2":
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
377
                print_to_err(
378 379
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
380
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
381
                model = dygraph.parallel.DataParallel(model, strategy)
382
                print_to_err(type(self).__name__, "model built in dygraph")
383
            out_losses = []
384
            print_to_err(type(self).__name__, "begin to run dygraph training")
385 386 387 388 389
            for step_id, data in enumerate(train_reader()):
                data = _get_data(data)
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
390
                if step_id % 10 == 0:
391
                    print_to_err(
392
                        type(self).__name__,
393
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
394
                out_losses.append(loss.numpy())
395

Y
Yan Xu 已提交
396 397 398
                # FIXME(Yancey1989): scale the loss inplace
                if args.update_method == "nccl2":
                    loss = model.scale_loss(loss)
399 400

                loss.backward()
Y
Yan Xu 已提交
401 402
                if args.update_method == "nccl2":
                    model.apply_collective_grads()
403 404 405

                opt.minimize(loss)
                model.clear_gradients()
406
        print_to_out(out_losses)
407 408


T
typhoonzero 已提交
409
def runtime_main(test_class):
W
Wu Yi 已提交
410 411 412 413
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
414 415 416 417
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
W
Wu Yi 已提交
418
        choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
419 420
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
421
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
422 423
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
424
    parser.add_argument('--gpu_fleet_api', action='store_true')
425 426
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
427
    parser.add_argument(
428
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
429 430 431
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
432
    parser.add_argument('--use_cuda', action='store_true')
433
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
434
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
435
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
436
    parser.add_argument('--hogwild', action='store_true')
437
    parser.add_argument(
W
Wu Yi 已提交
438
        '--use_reader_alloc', action='store_true', required=False)
439
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
440
    parser.add_argument('--lr', required=False, type=float, default=0.001)
441 442
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
443 444 445 446 447
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
W
Wu Yi 已提交
448 449

    args = parser.parse_args()
T
typhoonzero 已提交
450 451

    model = test_class()
W
Wu Yi 已提交
452
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
453
        model.run_pserver(args)
454 455
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
T
typhoonzero 已提交
456
    else:
457
        model.run_trainer(args)
X
Xin Pan 已提交
458

M
minqiyang 已提交
459

M
minqiyang 已提交
460
import paddle.compat as cpt
Y
Yancey1989 已提交
461 462
import socket
from contextlib import closing
M
minqiyang 已提交
463

X
Xin Pan 已提交
464 465

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
466 467 468
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

469 470 471
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
472
            self._use_dgc = False
473 474 475 476 477 478 479
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
480 481 482 483
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
484

X
Xin Pan 已提交
485 486 487
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
488
        self._port_set = set()
Y
Yancey1989 已提交
489 490
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
M
minqiyang 已提交
491
        self._python_interp = sys.executable
W
Wu Yi 已提交
492
        self._sync_mode = True
T
tangwei12 已提交
493
        self._hogwild_mode = False
494
        self._enforce_place = None
W
Wu Yi 已提交
495
        self._use_reduce = False
W
Wu Yi 已提交
496
        self._dc_asgd = False  # must use with async mode
497
        self._use_reader_alloc = True
W
Wu Yi 已提交
498
        self._nccl2_mode = False
499
        self._mp_mode = False
W
Wu Yi 已提交
500 501 502 503 504
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
505
        self._lr = 0.001
506
        self._use_dgc = False
507
        self._dygraph = False
508
        self._nccl_comm_num = 1
509
        self._enable_backward_deps = False
510
        self._gpu_fleet_api = False
511 512
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
513
        self._use_hallreduce = False
W
Wu Yi 已提交
514
        self._setup_config()
515
        self._after_setup_config()
X
Xin Pan 已提交
516

Y
Yancey1989 已提交
517
    def _find_free_port(self):
Y
Yancey1989 已提交
518 519 520 521
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
522
                print_to_err(
523
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
524 525 526 527 528 529 530
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
531

532
    def start_pserver(self, model_file, check_error_log, required_envs):
X
Xin Pan 已提交
533
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
534 535 536 537 538 539 540 541
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
542
        ps0_cmd = ps_cmd % \
543 544
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
545
        ps1_cmd = ps_cmd % \
546 547
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
548 549 550 551

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
552

553 554
        print(ps0_cmd)
        print(ps1_cmd)
M
minqiyang 已提交
555 556
        ps0_pipe = open("/tmp/ps0_err.log", "wb")
        ps1_pipe = open("/tmp/ps1_err.log", "wb")
G
gongweibao 已提交
557

558
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
559
        ps0_proc = subprocess.Popen(
560 561 562 563
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
564
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
565
        ps1_proc = subprocess.Popen(
566 567 568 569
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
570

571
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
572

573 574 575 576 577
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
578
                   batch_merge_repeat=1,
579 580
                   log_name="",
                   gpus="0"):
G
gongweibao 已提交
581

582 583 584 585 586 587 588 589
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

        cmd += " %s --role trainer --lr %f" % (model, self._lr)

590 591 592 593
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
594 595
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
596

597
        if self.__use_cuda:
598
            cmd += " --use_cuda"
W
Wu Yi 已提交
599
            env_local = {
600
                "CUDA_VISIBLE_DEVICES": gpus,
W
Wu Yi 已提交
601 602 603
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
604 605 606
        else:
            env_local = {'CPU_NUM': '1'}

607 608 609 610
        # not use dgc in single card
        if len(gpus) > 1 and self._use_dgc:
            cmd += " --use_dgc"

W
Wu Yi 已提交
611 612
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
613

614
        if check_error_log:
615
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
616
            local_proc = subprocess.Popen(
617
                cmd.split(" "),
G
gongweibao 已提交
618
                stdout=subprocess.PIPE,
619
                stderr=err_log,
W
Wu Yi 已提交
620
                env=env_local)
G
gongweibao 已提交
621 622
        else:
            local_proc = subprocess.Popen(
623
                cmd.split(" "),
G
gongweibao 已提交
624
                stdout=subprocess.PIPE,
625
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
626
                env=env_local)
G
gongweibao 已提交
627

628 629 630 631 632 633
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
634
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
635

W
Wu Yi 已提交
636
        return pickle.loads(local_out)
637

638
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
639
        # Run dist train to compare with local results
640 641
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
                                                          check_error_log, envs)
W
Wu Yi 已提交
642

X
Xin Pan 已提交
643
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
644

645 646 647 648 649 650 651 652
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
653
        tr0_cmd = tr_cmd % \
654
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
655
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
656
        tr1_cmd = tr_cmd % \
657
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
658
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
659 660 661 662

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
663 664 665
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
666 667 668
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
669 670 671
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
672
        if self.__use_cuda:
673 674 675 676 677 678 679 680 681 682
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
683

W
Wu Yi 已提交
684 685
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
686 687
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
688

689
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
690
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
691
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
692
            stdout=subprocess.PIPE,
G
gongweibao 已提交
693
            stderr=tr0_pipe,
X
Xin Pan 已提交
694
            env=env0)
695
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
696
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
697
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
698
            stdout=subprocess.PIPE,
G
gongweibao 已提交
699
            stderr=tr1_pipe,
X
Xin Pan 已提交
700 701
            env=env1)

702 703 704 705 706 707 708 709 710 711 712 713
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

714 715
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
716

G
gongweibao 已提交
717
        # close trainer file
718 719 720 721
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
722

W
Wu Yi 已提交
723 724
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
725

W
Wu Yi 已提交
726 727
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

728 729 730
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
731 732 733 734 735 736 737
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

738
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
739 740
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
741 742

        if self._use_reduce:
743
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
744
        if self._use_reader_alloc:
745
            tr_cmd += " --use_reader_alloc"
W
Wu Yi 已提交
746
        if self.__use_cuda:
747 748 749 750
            tr_cmd += " --use_cuda"
            env.update({
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
751 752 753
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
754
            })
W
Wu Yi 已提交
755
        else:
756
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
757

758
        if self._use_dgc:
759 760 761 762
            tr_cmd += " --use_dgc"

        if self._mp_mode:
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
763 764

        if self._nccl_comm_num > 1:
765
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
766

767 768
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
769

770
        if self._enable_backward_deps:
771
            tr_cmd += " --enable_backward_deps"
772

773 774
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"
775 776 777 778
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
779

780 781 782
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

783
        return tr_cmd, env
W
Wu Yi 已提交
784

785
    def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
786
                           check_error_log, log_name):
787 788 789 790 791
        if self._use_hallreduce:
            self._ps_endpoints = ""
            for i in range(0, 4):
                self._ps_endpoints += "127.0.0.1:%s," % (self._find_free_port())
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
792

793 794 795 796 797 798
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        if nccl2_reduce_layer:
            update_method = "nccl2_reduce_layer"
        else:
            update_method = "nccl2"
W
Wu Yi 已提交
799

800
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
801

802 803 804 805 806 807 808 809
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
810

811
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
812

813
            print_to_err(
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

832 833 834
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
835
        return pickle.loads(outs[0]), pickle.loads(outs[1])
836

837
    def _get_required_envs(self, check_error_log=False, need_envs={}):
838 839 840 841 842 843
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
844
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
845
            "FLAGS_cudnn_deterministic": "1",
W
Wu Yi 已提交
846
            "http_proxy": "",
847 848
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
849 850 851
        }

        if check_error_log:
852
            required_envs["GLOG_vmodule"] = \
853 854 855
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
                "sparse_all_reduce_op_handle=10"
856 857
            required_envs["GLOG_logtostderr"] = "1"

858 859 860 861 862 863 864 865 866 867 868
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
869
        local_losses \
870
            = self._run_local(model_file, required_envs,
871 872
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
873
        if self._nccl2_mode:
W
Wu Yi 已提交
874 875
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
876 877 878 879 880
                    model_file,
                    required_envs,
                    True,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
881 882
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
883 884 885 886 887
                    model_file,
                    required_envs,
                    False,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
888 889
        else:
            tr0_losses, tr1_losses = self._run_cluster(
890
                model_file, required_envs, check_error_log, log_name=log_name)
891 892

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
893 894 895
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
Y
Yan Xu 已提交
896
            dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
897 898
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                gpus="0,1")

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                gpus="0,1")

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)