elementwise_sub_op.cu 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
17
#include "paddle/fluid/platform/complex.h"
18
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
19 20

namespace ops = paddle::operators;
21 22 23 24 25
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37
template <typename T>
class ElementwiseSubKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
38
        cuda_ctx, ins, &outs, axis, SubFunctor<T>());
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  }
};

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = -dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
63
  dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
64
  auto size = x->numel();
65
  dim3 grid_size =
66
      dim3((size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
67
  SimpleElemwiseSubGradCUDAKernel<
68
      T><<<grid_size, block_size, 0,
69 70 71 72 73 74 75
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
76

Q
QI JUN 已提交
77
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
78
    elementwise_sub,
Q
QI JUN 已提交
79
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, float>,
80 81
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
82 83
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int>,
84 85
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
86
                              paddle::platform::complex<float>>,
87
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
88
                              paddle::platform::complex<double>>);
Q
QI JUN 已提交
89
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
90
    elementwise_sub_grad,
Q
QI JUN 已提交
91
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, float>,
92 93
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
94 95
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int>,
96 97
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
98
                                  paddle::platform::complex<float>>,
Q
QI JUN 已提交
99
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
100
                                  paddle::platform::complex<double>>);
101 102 103 104 105 106 107 108 109
REGISTER_OP_CUDA_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
110 111
                                        int64_t>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
112
                                        paddle::platform::complex<float>>,
113
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
114
                                        paddle::platform::complex<double>>);