MultiNetwork.h 2.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "GradientMachine.h"
#include "NeuralNetwork.h"

#include "paddle/utils/Locks.h"

namespace paddle {

class MultiNetwork : public NeuralNetwork {
public:
  explicit MultiNetwork(std::string subModelName = "")
      : NeuralNetwork(subModelName) {}

29 30
  virtual void init(const ModelConfig& config,
                    ParamInitCallback callback,
Z
zhangjinchao01 已提交
31 32 33 34 35 36
                    const std::vector<ParameterType>& parameterTypes,
                    bool useGpu);

  virtual void prefetch(const std::vector<Argument>& inArgs);

  virtual void forward(const std::vector<Argument>& inArgs,
37 38
                       std::vector<Argument>* outArgs,
                       PassType passType);
Z
zhangjinchao01 已提交
39 40 41 42

  virtual void backward(const UpdateCallback& callback = nullptr);

  void forwardBackward(const std::vector<Argument>& inArgs,
43 44
                       std::vector<Argument>* outArgs,
                       PassType passType,
Z
zhangjinchao01 已提交
45 46 47 48 49 50
                       const UpdateCallback& callback);

  virtual void onPassEnd();

  virtual Evaluator* makeEvaluator();

Y
Yu Yang 已提交
51
  virtual void eval(Evaluator* evaluator) const;
Z
zhangjinchao01 已提交
52 53 54 55 56

  const std::vector<std::unique_ptr<NeuralNetwork>>& getSubNetworks() const {
    return subNetworks_;
  }

57
  virtual void start(const TrainerConfig& config, DataProviderPtr dataProvider);
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64

  virtual void finish();

protected:
  std::vector<std::unique_ptr<NeuralNetwork>> subNetworks_;
};
}  // namespace paddle