initializer.py 40.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import in_dygraph_mode, default_main_program
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26

27
__all__ = [
28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
31
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
32
]
33

34 35 36
_global_weight_initializer_ = None
_global_bias_initializer_ = None

37 38 39 40 41 42 43 44 45 46

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
47
    def __init__(self):
48 49
        pass

50
    def __call__(self, param, block=None):
51 52 53 54
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

55 56
    def _check_block(self, block):
        if block is None:
57
            block = default_main_program().global_block()
58 59 60

        return block

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

96 97 98

class ConstantInitializer(Initializer):
    """Implements the constant initializer
99 100

    Args:
D
Double_V 已提交
101
        value (float32): constant value to initialize the variable 
102 103 104 105

    Examples:
        .. code-block:: python

106 107 108
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112 113
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
114

115 116
    """

117
    def __init__(self, value=0.0, force_cpu=False):
118 119 120
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
121
        self._force_cpu = force_cpu
122

123 124
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
125 126

        Args:
127 128 129
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
130 131

        Returns:
132
            The initialization op
133
        """
134 135
        block = self._check_block(block)

136 137
        assert (isinstance(var, framework.Variable) or
                isinstance(var, framework.EagerParamBase))
138
        assert isinstance(block, framework.Block)
139

140
        if framework.in_dygraph_mode():
141 142
            var = _C_ops.fill_constant(
                var, 'value',
143
                float(self._value), 'force_cpu', self._force_cpu, 'dtype',
144
                int(var.dtype), 'str_value',
145 146 147 148 149 150
                str(float(self._value)), 'shape', var.shape)
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
            op = block.append_op(
                type="fill_constant",
151
                outputs={"Out": var},
152 153
                attrs={
                    "shape": var.shape,
154
                    "dtype": int(var.dtype),
155 156 157 158 159
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu
                },
                stop_gradient=True)
160

161
            var.op = op
162
            return op
163 164 165


class UniformInitializer(Initializer):
166
    """Implements the random uniform distribution initializer
167 168 169 170 171

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
172 173 174 175 176 177
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
178 179 180 181

    Examples:
        .. code-block:: python

X
xiaoting 已提交
182
            import paddle.fluid as fluid
183
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
184
            fc = fluid.layers.fc(input=x, size=10,
185
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
186 187
    """

188 189 190 191 192 193 194
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
195 196
        assert low is not None
        assert high is not None
197
        assert high >= low
198
        assert seed is not None
199 200 201 202 203
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
204 205 206 207
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
208 209 210
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
211

212 213
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
214 215

        Args:
216 217 218
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
219 220

        Returns:
221
            The initialization op
222
        """
223 224
        block = self._check_block(block)

225
        assert isinstance(block, framework.Block)
226 227
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
228 229
                                 "uniform_random")

D
dzhwinter 已提交
230 231
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
232

X
polish  
Xin Pan 已提交
233
        # to be compatible of fp16 initializers
234
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
235 236
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
237 238
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
239 240 241 242 243 244 245 246
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

247 248 249 250 251 252 253 254
        if framework.in_dygraph_mode():
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
255
                var.copy_(var_tmp, False)
256
            else:
257
                var.copy_(out_var, False)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            return None
        else:
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val
                },
                stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
W
Wu Yi 已提交
283

284
            var.op = op
285
            return op
286 287 288


class NormalInitializer(Initializer):
289 290 291 292 293 294 295 296 297 298
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
299
            import paddle.fluid as fluid
300
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
301 302
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
303

304 305 306 307 308 309 310 311 312 313 314
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

315 316
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
317 318

        Args:
319 320 321
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
322 323

        Returns:
324
            The initialization op
325
        """
326 327
        block = self._check_block(block)

328
        assert isinstance(block, framework.Block)
329

330 331
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
332
                                 "guassian_random")
333

D
dzhwinter 已提交
334 335
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350
        op = block.append_op(
            type="gaussian_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
                "dtype": var.dtype,
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed,
                "use_mkldnn": False
            },
            stop_gradient=True)

        if not framework.in_dygraph_mode():
351
            var.op = op
352
            return op
353 354
        else:
            return None
355 356


357 358 359 360 361 362 363 364 365 366 367
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
368
            import paddle.fluid as fluid
369
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
370 371 372 373 374 375 376 377
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
378
        super(TruncatedNormalInitializer, self).__init__()
379 380 381 382
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

383 384
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
385 386

        Args:
387 388 389
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
390 391

        Returns:
392
            The initialization op
393
        """
394 395
        block = self._check_block(block)

396 397
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
398

399 400
        if self._seed == 0:
            self._seed = block.program.random_seed
401 402

        # to be compatible of fp16 initalizers
403
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
404 405 406
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
407
                    ['truncated_gaussian_random', var.name, 'tmp'])),
408 409 410 411 412 413 414 415
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

416 417 418 419 420 421 422
        if framework.in_dygraph_mode():
            out_var = _C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
423
                var.copy_(var_tmp, False)
424
            else:
425
                var.copy_(out_var, False)
426 427 428 429 430 431 432 433 434 435 436 437 438
            return None
        else:
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed
                },
                stop_gradient=True)
439

440 441 442 443 444 445 446
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
447
            var.op = op
448
            return op
449 450


451
class XavierInitializer(Initializer):
452
    r"""
453
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
454 455 456
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
457 458 459

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
460 461 462 463 464 465
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

466
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
467
    is
468

Q
qiaolongfei 已提交
469
    .. math::
470

Q
qiaolongfei 已提交
471
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
472 473


Q
qiaolongfei 已提交
474
    Args:
X
xiaoting 已提交
475 476
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
477
                inferred from the variable.
X
xiaoting 已提交
478
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
479 480 481 482 483 484 485 486 487
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
488
            import paddle.fluid as fluid
X
xiaoting 已提交
489
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
490 491 492 493 494 495 496
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
497 498 499 500 501 502 503 504
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

505 506
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
507 508

        Args:
509 510 511
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
512 513

        Returns:
514
            The initialization op
515
        """
516 517
        block = self._check_block(block)

518
        assert isinstance(block, framework.Block)
519 520
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
521 522
                                 "xavier_init")

523 524 525 526 527 528
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
529 530 531
        if self._seed == 0:
            self._seed = block.program.random_seed

532
        # to be compatible of fp16 initalizers
533 534
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
535 536 537 538 539 540 541 542 543 544 545 546
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

547 548 549
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
550
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
551 552 553 554 555 556 557 558 559 560 561 562
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype', out_dtype)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                    'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
563
                var.copy_(var_tmp, False)
564
            else:
565
                var.copy_(out_var, False)
566
            return None
567
        else:
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
604

605
            var.op = op
606
            return op
607 608 609


class MSRAInitializer(Initializer):
610
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
611 612

    This class implements the weight initialization from the paper
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
632 633 634
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
635 636 637 638 639 640

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
641

642
            import paddle
X
xsrobin 已提交
643
            import paddle.fluid as fluid
644
            paddle.enable_static()
D
Double_V 已提交
645
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
646 647
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
648

649 650 651 652 653 654 655 656 657 658 659 660
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

661 662
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
663 664

        Args:
665 666 667
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
668 669

        Returns:
670
            The initialization op
671
        """
672 673
        block = self._check_block(block)

674 675 676 677 678 679 680
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
681 682 683
        if self._seed == 0:
            self._seed = block.program.random_seed

684
        # to be compatible of fp16 initalizers
685 686
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
687 688 689 690 691 692 693 694 695 696 697 698
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
                std = np.sqrt(2.0 / float(fan_in))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype',
                    int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
716
                var.copy_(var_tmp, False)
717
            else:
718
                var.copy_(out_var, False)
719
            return None
720
        else:
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            else:
                std = np.sqrt(2.0 / float(fan_in))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
758

759
            var.op = op
760
            return op
761 762


763
class BilinearInitializer(Initializer):
764
    """
765 766 767
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
768 769 770 771 772

    Examples:

        .. code-block:: python

773
            import math
774 775 776 777 778

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
779 780
            factor = 2
            C = 2
D
Double_V 已提交
781 782
            B = 8
            H = W = 32
783 784 785 786
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
787
            conv_up = nn.Conv2DTranspose(3,
788 789 790 791 792 793 794 795 796 797 798
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
799 800 801 802
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
803 804
    interpolation unchanged during training.

805 806 807 808 809 810 811
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

812 813
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
814 815

        Args:
816 817 818
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
819 820

        Returns:
821
            The initialization op
822
        """
823 824
        block = self._check_block(block)

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

849
        # to be compatible of fp16 initalizers
850 851 852
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
853 854 855 856 857 858 859 860 861 862 863 864 865
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
866 867 868
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
869 870
            raise TypeError("Unsupported dtype %s", var.dtype)

871 872
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
873

874 875 876 877 878 879 880 881 882 883
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(shape), 'dtype', out_dtype,
                                          value_name, values)
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
884
                var.copy_(var_tmp, False)
885
            else:
886
                var.copy_(out_var, False)
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values
                })

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

909
            var.op = op
910
            return op
911 912


913 914
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
915
    This op initialize the variable by numpy array.
916 917 918 919

    Args:
        value (numpy): numpy array to initialize the variable

920 921 922
    Returns:
        A Tensor variable initialized by numpy.

923 924 925
    Examples:
        .. code-block:: python

926
            import paddle.fluid as fluid
927 928
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
929 930 931 932 933 934 935 936 937 938
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

939 940
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
941 942

        Args:
943 944 945
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
946 947

        Returns:
948
            The initialization op
949
        """
950 951
        block = self._check_block(block)

952 953
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
954 955

        # to be compatible of fp16 initalizers
956
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
972
            value_name = "fp32_values"
973 974
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
975
            value_name = "int32_values"
976
            values = [int(v) for v in np_value.flat]
977 978
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
979
        if self._value.size > 1024 * 1024 * 1024:
980 981
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
982

983 984 985 986 987 988 989
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(self._value.shape), 'dtype',
                                          out_dtype, value_name, values)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
990
                var.copy_(var_tmp, False)
991
            else:
992
                var.copy_(out_var, False)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values
                },
                stop_gradient=True)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

1013
            var.op = op
1014
            return op
1015 1016


1017 1018 1019 1020 1021 1022 1023
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1024
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1044 1045 1046 1047 1048
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1049 1050 1051

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1052 1053
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1054 1055 1056 1057

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1058 1059 1060 1061
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1062 1063

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1064
            nn.initializer.set_global_initializer(None)
1065
    """
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1092 1093
def calculate_gain(nonlinearity, param=None):
    """
1094 1095
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1096 1097

    Args:
1098 1099
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1100
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1101
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1102 1103

    Returns:
1104
        A float value, which is the recommended gain for this nonlinearity function.
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1125 1126 1127
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1152
TruncatedNormal = TruncatedNormalInitializer
1153 1154
Xavier = XavierInitializer
MSRA = MSRAInitializer
1155
Bilinear = BilinearInitializer