unpooling.cu 5.0 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
S
sweetsky0901 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/unpooling.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
S
sweetsky0901 已提交
17 18 19 20

namespace paddle {
namespace operators {
namespace math {
S
sweetsky0901 已提交
21
template <typename T>
S
sweetsky0901 已提交
22
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
S
sweetsky0901 已提交
23
                                  const int* indices_data,
S
sweetsky0901 已提交
24
                                  const int input_height, const int input_width,
S
sweetsky0901 已提交
25 26 27
                                  const int channels, T* output_data,
                                  const int output_height,
                                  const int output_width) {
28 29 30 31 32 33
  CUDA_KERNEL_LOOP(linearIndex, nthreads) {
    int c = (linearIndex / input_width / input_height) % channels;
    int n = linearIndex / input_width / input_height / channels;
    output_data += (n * channels + c) * output_height * output_width;
    int maxind = indices_data[linearIndex];
    output_data[maxind] = input_data[linearIndex];
S
sweetsky0901 已提交
34
  }
S
sweetsky0901 已提交
35
}
36

S
sweetsky0901 已提交
37
template <typename T>
S
sweetsky0901 已提交
38 39 40 41 42
__global__ void KernelUnpool2dMaxGrad(
    const int nthreads, const T* input_data, const int* indices_data,
    const int input_height, const int input_width, const int channels,
    const T* output_data, const T* output_grad, const int output_height,
    const int output_width, T* input_grad) {
43 44 45 46 47 48
  CUDA_KERNEL_LOOP(linearIndex, nthreads) {
    int c = (linearIndex / input_width / input_height) % channels;
    int n = linearIndex / input_width / input_height / channels;
    output_grad += (n * channels + c) * output_height * output_width;
    int maxind = indices_data[linearIndex];
    input_grad[linearIndex] = output_grad[maxind];
S
sweetsky0901 已提交
49
  }
S
sweetsky0901 已提交
50 51 52 53
}
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
54
template <typename T>
Q
QI JUN 已提交
55
class Unpool2dMaxFunctor<platform::CUDADeviceContext, T> {
S
sweetsky0901 已提交
56
 public:
Q
QI JUN 已提交
57
  void operator()(const platform::CUDADeviceContext& context,
S
sweetsky0901 已提交
58 59
                  const framework::Tensor& input,
                  const framework::Tensor& indices, framework::Tensor* output) {
S
sweetsky0901 已提交
60 61 62 63 64 65 66
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
67
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
68
    T* output_data = output->mutable_data<T>(context.GetPlace());
R
ronnywang 已提交
69 70 71
#ifdef __HIPCC__
    int threads = 256;
#else
72
    int threads = 1024;
R
ronnywang 已提交
73
#endif
S
sweetsky0901 已提交
74
    int grid = (input.numel() + threads - 1) / threads;
Q
QI JUN 已提交
75 76 77
    KernelUnpool2dMax<T><<<grid, threads, 0, context.stream()>>>(
        input.numel(), input_data, indices_data, input_height, input_width,
        output_channels, output_data, output_height, output_width);
S
sweetsky0901 已提交
78 79 80 81 82
  }
};
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
83
template <typename T>
Q
QI JUN 已提交
84
class Unpool2dMaxGradFunctor<platform::CUDADeviceContext, T> {
S
sweetsky0901 已提交
85
 public:
Q
QI JUN 已提交
86
  void operator()(const platform::CUDADeviceContext& context,
S
sweetsky0901 已提交
87
                  const framework::Tensor& input,
S
sweetsky0901 已提交
88
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
89
                  const framework::Tensor& output,
S
sweetsky0901 已提交
90
                  const framework::Tensor& output_grad,
S
sweetsky0901 已提交
91
                  framework::Tensor* input_grad) {
S
sweetsky0901 已提交
92 93 94 95 96 97 98
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
99
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
100 101 102
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
R
ronnywang 已提交
103 104 105
#ifdef __HIPCC__
    int threads = 256;
#else
106
    int threads = 1024;
R
ronnywang 已提交
107
#endif
S
sweetsky0901 已提交
108
    int grid = (input.numel() + threads - 1) / threads;
Q
QI JUN 已提交
109 110 111 112
    KernelUnpool2dMaxGrad<T><<<grid, threads, 0, context.stream()>>>(
        input.numel(), input_data, indices_data, input_height, input_width,
        output_channels, output_data, output_grad_data, output_height,
        output_width, input_grad_data);
S
sweetsky0901 已提交
113 114
  }
};
Q
QI JUN 已提交
115 116 117 118
template class Unpool2dMaxGradFunctor<platform::CUDADeviceContext, float>;
template class Unpool2dMaxGradFunctor<platform::CUDADeviceContext, double>;
template class Unpool2dMaxFunctor<platform::CUDADeviceContext, float>;
template class Unpool2dMaxFunctor<platform::CUDADeviceContext, double>;
S
sweetsky0901 已提交
119 120 121
}  // namespace math
}  // namespace operators
}  // namespace paddle