test_machine_translation.py 3.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
import numpy as np
import paddle.v2 as paddle
Q
Qiao Longfei 已提交
3
import paddle.v2.fluid as fluid
Y
Yan Chunwei 已提交
4 5 6
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
Q
Qiao Longfei 已提交
7
from paddle.v2.fluid.executor import Executor
Y
Yan Chunwei 已提交
8 9 10 11

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
Q
Qiao Longfei 已提交
12 13
hidden_dim = 32
word_dim = 16
Y
Yan Chunwei 已提交
14
IS_SPARSE = True
Q
Qiao Longfei 已提交
15
batch_size = 10
Y
Yan Chunwei 已提交
16 17 18 19
max_length = 50
topk_size = 50
trg_dic_size = 10000

Q
Qiao Longfei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
decoder_size = hidden_dim


def encoder_decoder():
    # encoder
    src_word_id = layers.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = layers.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_pool(input=lstm_hidden0, pool_type="last")

    # decoder
    trg_language_word = layers.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = layers.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
        mem = rnn.memory(init=encoder_out)
        fc1 = fluid.layers.fc(input=[current_word, mem],
                              size=decoder_size,
                              act='tanh')
        out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
        rnn.update_memory(mem, fc1)
        rnn.output(out)

    return rnn()
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def main():
Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85
    rnn_out = encoder_decoder()
    label = layers.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
86 87 88

    train_data = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
89
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
Y
Yan Chunwei 已提交
90 91 92 93 94 95 96 97 98 99 100
        batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(2):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
Q
Qiao Longfei 已提交
101 102
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
Y
Yan Chunwei 已提交
103
            outs = exe.run(framework.default_main_program(),
Q
Qiao Longfei 已提交
104 105 106 107 108 109 110 111 112 113 114 115
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 3:
                exit(0)
            batch_id += 1
Y
Yan Chunwei 已提交
116 117 118 119


if __name__ == '__main__':
    main()