analysis_predictor.cc 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26
#include "paddle/fluid/framework/ir/pass.h"
27
#include "paddle/fluid/framework/naive_executor.h"
28
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/var_type_traits.h"
30
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
32
#include "paddle/fluid/inference/api/helper.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/memory/memcpy.h"
37
#include "paddle/fluid/platform/cpu_helper.h"
38
#include "paddle/fluid/platform/gpu_info.h"
39
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
46 47
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
48
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
49 50
#endif

N
nhzlx 已提交
51
#if PADDLE_WITH_ANAKIN
52
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
53
#endif
54

T
tensor-tang 已提交
55
DECLARE_bool(profile);
56 57 58

namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
82 83 84
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
85 86
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
87 88 89
    platform::EnableProfiler(tracking_device);
  }

90
  // no matter with or without MKLDNN
L
luotao1 已提交
91
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
92

93 94 95 96 97 98 99 100 101 102 103 104 105
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
106
  }
107 108 109 110 111 112 113 114 115

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
116
  if (parent_scope) {
117 118 119
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
120
    scope_ = parent_scope;
121
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
122 123 124
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
125
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
126
  }
127 128 129 130 131
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
132 133
  if (!program) {
    if (!LoadProgramDesc()) return false;
134

135 136 137 138 139 140 141 142 143
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

144 145 146
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
147
    if (config_.ir_optim()) {
148 149 150 151 152 153 154
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
155
  } else {
156 157
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
158 159
    inference_program_ = program;
  }
M
Michal Gallus 已提交
160

161 162 163 164 165
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
166
  if (config_.use_gpu_) {
167
    status_use_gpu_ = true;
168
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
169 170 171 172 173 174 175 176
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
177
                     config_.use_feed_fetch_ops_);
178

179
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
180

181 182 183
  return true;
}

L
luotao1 已提交
184
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
185 186 187 188 189 190 191
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

192 193 194
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
195 196 197
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
198
  VLOG(3) << "Predictor::predict";
199 200 201 202 203 204
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
205
    return false;
206
  }
M
Michal Gallus 已提交
207

208 209 210
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
211

212 213 214 215
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
216
  }
Y
Yan Chunwei 已提交
217 218 219 220 221 222

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
223
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
224

Y
Yan Chunwei 已提交
225 226 227 228 229 230 231
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
232 233
  return true;
}
234

235 236
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
237
  VLOG(3) << "Predictor::set_feed";
238 239 240 241 242 243 244 245 246 247 248 249 250 251
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
252
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
253
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
254
      input_ptr = input.mutable_data<float>(ddim, place_);
255 256
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
257 258 259 260 261
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

262 263 264
    PADDLE_ENFORCE_NOT_NULL(input_ptr);
    PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());

265 266 267 268 269 270
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
271 272 273 274
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
275 276 277
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
278
                   inputs[i].data.length(), dev_ctx->stream());
279 280 281 282
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
283 284 285 286 287 288 289
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
290
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
291 292
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
293 294
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
295 296
      }
      idx = feed_names_[name];
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
327
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
328 329 330
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
331 332 333 334 335
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
336
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
337
    if (type == framework::proto::VarType::FP32) {
338 339
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
340
    } else if (type == framework::proto::VarType::INT64) {
341 342
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
343 344 345
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
346
    } else {
347
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
348 349
    }
  }
Y
Yan Chunwei 已提交
350 351
  return true;
}
352

353
void AnalysisPredictor::PrepareArgument() {
354 355
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
356
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
357 358 359
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
360
  argument_.SetModelFromMemory(config_.model_from_memory_);
361
  argument_.SetEngineOptInfo(config_.engine_opt_info_);
Y
Yan Chunwei 已提交
362
  // Analyze inference_program
363 364
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
365 366
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
367 368
  } else {
    PADDLE_ENFORCE(
369
        !config_.params_file().empty(),
T
Tao Luo 已提交
370
        "Either model_dir or (param_file, prog_file) should be set.");
371
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
372
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
373

374 375
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
376
  }
377

378
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
379
    LOG(INFO) << "TensorRT subgraph engine is enabled";
380 381 382
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
383
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
384
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
385
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
W
Wojciech Uss 已提交
386
  }
387

388
  if (config_.anakin_engine_enabled()) {
389
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
390
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
391
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
392
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
393
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
394 395
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
396 397 398
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

399
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
400
    LOG(INFO) << "MKLDNN is enabled";
401 402 403
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

404 405 406 407 408 409 410 411 412 413
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

414
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
415 416 417 418
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
419
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
420
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
421
  argument_.SetScopeNotOwned(scope_.get());
422 423 424 425 426 427 428
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  status_program_optimized_ = true;

  PrepareArgument();
429 430 431 432 433
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
434
  inference_program_.reset(
435
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
436
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
437
}
438 439

template <>
440 441
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
442
  VLOG(3) << "create AnalysisConfig";
443
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
444
    // 1. GPU memory
445
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
446 447
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
448
    std::vector<std::string> flags;
449 450 451 452 453 454 455 456 457 458 459

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
460 461
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
462
                         std::to_string(fraction_of_gpu_memory);
463
      flags.push_back(flag);
M
minqiyang 已提交
464
      VLOG(3) << "set flag: " << flag;
465 466 467 468 469
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
470 471 472 473 474 475 476
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
477 478
    return nullptr;
  }
479

G
Gabor Buella 已提交
480
  return predictor;
481 482
}

483 484 485 486 487 488 489 490 491 492 493 494
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

495
void AnalysisPredictor::PrepareFeedFetch() {
496 497
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
498 499 500 501 502 503 504 505
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
506
      idx2feeds_[idx] = op->Output("Out")[0];
507 508
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
509 510
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
511
      }
Y
Yan Chunwei 已提交
512
      fetches_[idx] = op;
N
nhzlx 已提交
513
      idx2fetches_[idx] = op->Input("X")[0];
514 515 516 517
    }
  }
}

518 519 520 521 522 523 524 525
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

542 543 544 545 546 547 548
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
549 550 551 552 553 554 555
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

556 557 558 559 560 561 562 563 564 565
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
566 567 568 569 570 571
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
572 573 574 575 576
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
577
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
578
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
579
  tensor_array_batch_cleaner_.ResetTensorArray();
580 581 582 583 584
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
585
  std::string filename;
586 587 588
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
589 590 591
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
592
    filename = config_.prog_file();
593
  } else {
594
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
595 596 597 598
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
599
    LOG(ERROR) << string::Sprintf(
600 601
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
602 603
    return false;
  }
604 605 606

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
607
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
608 609 610
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
611 612
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
613 614 615 616 617 618 619 620
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
621
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
622
  }
623 624 625 626 627 628 629
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

651
      if (!config_.params_file().empty()) {
652 653 654 655 656 657
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
658
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
659 660 661 662 663
        op->CheckAttrs();
      }
    }
  }

664
  if (!config_.params_file().empty()) {
665 666 667 668 669 670
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
671
    op->SetAttr("file_path", {config_.params_file()});
672 673 674 675
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
676
  framework::NaiveExecutor e(place_);
677 678 679 680
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

681 682
  return true;
}
683

N
nhzlx 已提交
684
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
685 686 687 688 689 690 691 692
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
693
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
694 695 696 697
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
698 699
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
700
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
701
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
702 703
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
704 705 706
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
707

N
nhzlx 已提交
708
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
709 710 711
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
712

N
nhzlx 已提交
713 714 715 716 717
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
718
      std::string calibration_table_data_path =
N
nhzlx 已提交
719 720 721 722
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
723 724 725 726 727

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
728 729 730 731
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
732
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
733 734
  return true;
}
N
nhzlx 已提交
735
#endif
N
nhzlx 已提交
736

737
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
738
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
739
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
740 741
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
742 743
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
744
#endif
745 746 747 748 749 750 751
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
752

753 754 755 756 757 758 759
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif

Y
Yan Chunwei 已提交
760 761 762 763 764 765
  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
766 767
}

768
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
769
  std::lock_guard<std::mutex> lk(clone_mutex_);
770 771 772 773 774
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
822
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
823 824 825
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
826 827
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
828 829 830 831 832 833 834
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

835
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
836 837 838
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
839
template <>
840 841 842 843
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
844 845
}

846
}  // namespace paddle
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
869
USE_TRT_CONVERTER(split);
870 871
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
872
USE_TRT_CONVERTER(leaky_relu);
873
#endif
874

N
nhzlx 已提交
875
#if PADDLE_WITH_ANAKIN
876
USE_ANAKIN_CONVERTER(mul);
877 878
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
879
USE_ANAKIN_CONVERTER(conv2d_fusion);
880 881 882 883 884 885 886
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
887
USE_ANAKIN_CONVERTER(elementwise_mul);
888 889 890 891 892 893 894
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
895 896
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
897
USE_ANAKIN_CONVERTER(prior_box);
898 899
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
900 901
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
902
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
903
#endif