attribute.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
from __future__ import print_function

from ..fluid.framework import core, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype

21
# TODO: define functions to get tensor attributes  
22 23
from ..fluid.layers import rank  # noqa: F401
from ..fluid.layers import shape  # noqa: F401
24
import paddle
W
wanghuancoder 已提交
25
from paddle import _C_ops
26

27 28
__all__ = []

29 30 31 32 33 34 35 36 37 38

def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


39 40 41 42 43 44 45 46 47 48
def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def is_complex(x):
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    """Return whether x is a tensor of complex data type(complex64 or complex128).

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is complex data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_complex(x))
            # True

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_complex(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_complex(x))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
77 78 79 80 81 82 83
    dtype = x.dtype
    is_complex_dtype = (dtype == core.VarDesc.VarType.COMPLEX64 or
                        dtype == core.VarDesc.VarType.COMPLEX128)
    return is_complex_dtype


def is_floating_point(x):
W
wuhuanzhou 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    """
    Returns whether the dtype of `x` is one of paddle.float64, paddle.float32, paddle.float16, and paddle.bfloat16.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the dtype of `x` is floating type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.arange(1, 5, dtype='int32')
            print(paddle.is_floating_point(x))
            # True
            print(paddle.is_floating_point(y))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
108 109 110 111 112 113 114 115
    dtype = x.dtype
    is_fp_dtype = (dtype == core.VarDesc.VarType.FP32 or
                   dtype == core.VarDesc.VarType.FP64 or
                   dtype == core.VarDesc.VarType.FP16 or
                   dtype == core.VarDesc.VarType.BF16)
    return is_fp_dtype


116
def is_integer(x):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    """Return whether x is a tensor of integeral data type.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is integer data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_integer(x))
            # True
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
        raise TypeError("Expected Tensor, but received type of x: {}".format(
            type(x)))
145 146 147 148 149 150 151 152 153
    dtype = x.dtype
    is_int_dtype = (dtype == core.VarDesc.VarType.UINT8 or
                    dtype == core.VarDesc.VarType.INT8 or
                    dtype == core.VarDesc.VarType.INT16 or
                    dtype == core.VarDesc.VarType.INT32 or
                    dtype == core.VarDesc.VarType.INT64)
    return is_int_dtype


154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def real(x, name=None):
    """
    Returns a new tensor containing real values of the input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .
      
    Returns:
        Tensor: a tensor containing real values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            real_res = paddle.real(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])

            real_t = x.real()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
188
        return _C_ops.real(x)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
    helper = LayerHelper('real', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(helper.input_dtype()))
    helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out})
    return out


def imag(x, name=None):
    """
    Returns a new tensor containing imaginary values of input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: a tensor containing imaginary values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            imag_res = paddle.imag(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])

            imag_t = x.imag()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
232
        return _C_ops.imag(x)
233 234 235 236 237 238 239

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
    helper = LayerHelper('imag', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(helper.input_dtype()))
    helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out})
    return out