Conv3DLayer.cpp 8.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "Conv3DLayer.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(conv3d, Conv3DLayer);

bool Conv3DLayer::init(const LayerMap &layerMap,
                       const ParameterMap &parameterMap) {
C
chengduoZH 已提交
25
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
C
chengduoZH 已提交
26 27
  int index = 0;
  for (auto &inputConfig : config_.inputs()) {
C
chengduoZH 已提交
28 29 30
    const ConvConfig &conf = inputConfig.conv_conf();
    M_.push_back(numFilters_ / conf.groups());
    K_.push_back(filterPixels_[index] * filterChannels_[index]);
C
chengduoZH 已提交
31 32 33 34 35 36 37 38

    // create a new weight
    size_t height, width;
    width = filterPixels_[index] * filterChannels_[index];
    height = numFilters_;
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
C
chengduoZH 已提交
39
    ++index;
C
chengduoZH 已提交
40
  }
C
chengduoZH 已提交
41 42 43 44
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
C
chengduoZH 已提交
45
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
C
chengduoZH 已提交
46 47
    } else {
      biases_ =
C
chengduoZH 已提交
48
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
C
chengduoZH 已提交
49 50
    }
  }
C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59 60 61
  return true;
}

size_t Conv3DLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  outputH_.clear();
  outputW_.clear();
  outputD_.clear();
  N_.clear();
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
C
chengduoZH 已提交
62 63 64 65 66 67 68 69 70 71
    outputW_.push_back(outputSize(
        imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
    outputH_.push_back(outputSize(
        imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
    outputD_.push_back(outputSize(
        imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));

    N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
    CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
    layerSize += N_[i] * numFilters_;
C
chengduoZH 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  getOutput().setFrameDepth(outputD_[0]);
  return layerSize;
}

void Conv3DLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  int outWidth = getSize();
  resetOutput(batchSize, outWidth);

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
C
chengduoZH 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
    const MatrixPtr &inMat = getInputValue(i);
    const MatrixPtr &outMat = getOutputValue();
    int M = M_[i];
    int N = N_[i];
    int K = K_[i];
    Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
    MatrixPtr wMat = weights_[i]->getW();
    for (int n = 0; n < batchSize; ++n) {
      colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
                       channels_[i],
                       imgSizeD_[i],
                       imgSizeH_[i],
                       imgSizeW_[i],
                       filterSizeZ_[i],
                       filterSizeY_[i],
                       filterSize_[i],
                       strideZ_[i],
                       strideY_[i],
                       stride_[i],
                       paddingZ_[i],
                       paddingY_[i],
                       padding_[i]);

      real *outData = outMat->getData() + n * outMat->getStride();
      MatrixPtr outMatSub =
          Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
      for (int g = 0; g < groups_[i]; g++) {
        MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
        MatrixPtr in = colBuf_->subMatrix(g * K, K);
        MatrixPtr out = outMatSub->subMatrix(g * M, M);
        out->mul(*wMatSub, *in, 1.0, 1.0);
C
chengduoZH 已提交
119
      }
C
chengduoZH 已提交
120
    }
C
chengduoZH 已提交
121 122
  }
  if (nullptr != this->biasParameter_) {
C
chengduoZH 已提交
123 124
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    this->addBias();
C
chengduoZH 已提交
125 126 127 128 129 130 131 132
  }
  forwardActivation();
}

void Conv3DLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
C
chengduoZH 已提交
133 134
    bpropBiases();
    biases_->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
135 136 137
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
C
chengduoZH 已提交
138 139 140 141 142 143 144 145 146
    REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
    if (weights_[i]->getWGrad()) {
      bpropWeights(i);
    }
    if (getInputGrad(i)) {
      bpropData(i);
    }
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weights_[i]->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
147 148 149 150 151 152 153
  }
}

void Conv3DLayer::bpropWeights(int i) {
  int M = M_[i];
  int N = N_[i];
  int K = K_[i];
C
chengduoZH 已提交
154
  const MatrixPtr &inMat = getInputValue(i);
C
chengduoZH 已提交
155 156 157 158
  Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
  MatrixPtr wGradMat = weights_[i]->getWGrad();
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
                     channels_[i],
                     imgSizeD_[i],
                     imgSizeH_[i],
                     imgSizeW_[i],
                     filterSizeZ_[i],
                     filterSizeY_[i],
                     filterSize_[i],
                     strideZ_[i],
                     strideY_[i],
                     stride_[i],
                     paddingZ_[i],
                     paddingY_[i],
                     padding_[i]);

    real *outGradData =
        getOutputGrad()->getData() + n * getOutputGrad()->getStride();
    MatrixPtr outGradSub =
        Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
    for (int g = 0; g < groups_[i]; ++g) {
      MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
      MatrixPtr outG = outGradSub->subMatrix(g * M, M);
      MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
      wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
    }
C
chengduoZH 已提交
184 185 186 187 188 189 190 191 192 193 194
  }
}

void Conv3DLayer::bpropData(int i) {
  int M = M_[i];
  int N = N_[i];
  int K = K_[i];
  Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
  MatrixPtr wMat = weights_[i]->getW();
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    real *outGradData =
        getOutputGrad()->getData() + n * getOutputGrad()->getStride();
    real *preGradData =
        getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
    MatrixPtr outGradSub =
        Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
    for (int g = 0; g < groups_[i]; ++g) {
      MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
      MatrixPtr outG = outGradSub->subMatrix(g * M, M);
      MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
      inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
    }
    colBuf_->col2Vol(preGradData,
                     channels_[i],
                     imgSizeD_[i],
                     imgSizeH_[i],
                     imgSizeW_[i],
                     filterSizeZ_[i],
                     filterSizeY_[i],
                     filterSize_[i],
                     strideZ_[i],
                     strideY_[i],
                     stride_[i],
                     paddingZ_[i],
                     paddingY_[i],
                     padding_[i],
                     1.0,
                     1.0);
C
chengduoZH 已提交
223 224 225 226
  }
}

void Conv3DLayer::bpropBiases() {
C
chengduoZH 已提交
227 228 229 230 231
  MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
C
chengduoZH 已提交
232
  MatrixPtr outGradMat = getOutputGrad();
C
chengduoZH 已提交
233

C
chengduoZH 已提交
234
  if (this->sharedBiases_) {
C
chengduoZH 已提交
235
    biases->collectSharedBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
236
  } else {
C
chengduoZH 已提交
237
    biases->collectBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
238 239 240 241 242
  }
}

void Conv3DLayer::addBias() {
  MatrixPtr outMat = getOutputValue();
C
chengduoZH 已提交
243 244 245 246 247
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
C
chengduoZH 已提交
248
  if (this->sharedBiases_) {
C
chengduoZH 已提交
249
    outMat->addSharedBias(*(bias), 1.0f);
C
chengduoZH 已提交
250
  } else {
C
chengduoZH 已提交
251
    outMat->addBias(*(bias), 1.0f);
C
chengduoZH 已提交
252 253 254 255
  }
}

}  // namespace paddle