trainer_factory.py 6.1 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of TrainerFactory."""
D
dongdaxiang 已提交
15

16 17 18 19 20
import threading
import time

import numpy as np

H
hutuxian 已提交
21 22
from .trainer_desc import MultiTrainer, DistMultiTrainer, PipelineTrainer
from .device_worker import Hogwild, DownpourSGD, Section
X
xjqbest 已提交
23

24
__all__ = ["TrainerFactory", "FetchHandler", "FetchHandlerMonitor"]
D
dongdaxiang 已提交
25 26 27


class TrainerFactory(object):
28 29 30 31 32 33
    """
    Create trainer and device worker.
    If opt_info is not None, it will get configs from opt_info,
    otherwise create MultiTrainer and Hogwild.
    """

D
dongdaxiang 已提交
34 35 36
    def __init__(self):
        pass

37
    def _create_trainer(self, opt_info=None):
D
dongdaxiang 已提交
38 39
        trainer = None
        device_worker = None
D
dongdaxiang 已提交
40
        if opt_info == None:
D
dongdaxiang 已提交
41 42 43
            # default is MultiTrainer + Hogwild
            trainer = MultiTrainer()
            device_worker = Hogwild()
44
            trainer._set_device_worker(device_worker)
D
dongdaxiang 已提交
45
        else:
D
dongdaxiang 已提交
46 47 48 49
            trainer_class = opt_info["trainer"]
            device_worker_class = opt_info["device_worker"]
            trainer = globals()[trainer_class]()
            device_worker = globals()[device_worker_class]()
H
hutuxian 已提交
50 51 52
            if "fleet_desc" in opt_info:
                device_worker._set_fleet_desc(opt_info["fleet_desc"])
                trainer._set_fleet_desc(opt_info["fleet_desc"])
53 54
                if opt_info.get("use_cvm") is not None:
                    trainer._set_use_cvm(opt_info["use_cvm"])
55 56
                if opt_info.get("no_cvm") is not None:
                    trainer._set_no_cvm(opt_info["no_cvm"])
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
                if opt_info.get("scale_datanorm") is not None:
                    trainer._set_scale_datanorm(opt_info["scale_datanorm"])
                if opt_info.get("dump_slot") is not None:
                    trainer._set_dump_slot(opt_info["dump_slot"])
                if opt_info.get("mpi_rank") is not None:
                    trainer._set_mpi_rank(opt_info["mpi_rank"])
                if opt_info.get("mpi_size") is not None:
                    trainer._set_mpi_size(opt_info["mpi_size"])
                if opt_info.get("dump_fields") is not None:
                    trainer._set_dump_fields(opt_info["dump_fields"])
                if opt_info.get("dump_fields_path") is not None:
                    trainer._set_dump_fields_path(opt_info["dump_fields_path"])
                if opt_info.get("dump_file_num") is not None:
                    trainer._set_dump_file_num(opt_info["dump_file_num"])
                if opt_info.get("dump_converter") is not None:
                    trainer._set_dump_converter(opt_info["dump_converter"])
                if opt_info.get("adjust_ins_weight") is not None:
                    trainer._set_adjust_ins_weight(opt_info[
                        "adjust_ins_weight"])
                if opt_info.get("copy_table") is not None:
                    trainer._set_copy_table_config(opt_info["copy_table"])
                if opt_info.get("check_nan_var_names") is not None:
                    trainer._set_check_nan_var_names(opt_info[
                        "check_nan_var_names"])
                if opt_info.get("dump_param") is not None:
                    trainer._set_dump_param(opt_info["dump_param"])
83
            trainer._set_device_worker(device_worker)
D
dongdaxiang 已提交
84
        return trainer
85 86 87


class FetchHandlerMonitor(object):
88 89 90 91 92
    """
    Defination of FetchHandlerMonitor class,
    it's for fetch handler.
    """

93 94 95 96 97 98 99 100
    def __init__(self, scope, handler):
        self.fetch_instance = handler
        self.fetch_thread = threading.Thread(
            target=self.handler_decorator,
            args=(scope, self.fetch_instance.handler))
        self.running = False

    def start(self):
101 102 103 104
        """
        start monitor,
        it will start a monitor thread.
        """
105 106 107 108 109
        self.running = True
        self.fetch_thread.setDaemon(True)
        self.fetch_thread.start()

    def handler_decorator(self, fetch_scope, fetch_handler):
110 111 112 113 114 115
        """
        decorator of handler,
        Args:
            fetch_scope(Scope): fetch scope
            fetch_handler(Handler): fetch handler
        """
116 117 118 119 120 121 122 123 124 125 126 127 128
        fetch_target_names = self.fetch_instance.fetch_target_names
        period_secs = self.fetch_instance.period_secs

        elapsed_secs = 0
        while True:
            while self.running and elapsed_secs >= period_secs:
                elapsed_secs = 0

                fetch_vars = [
                    fetch_scope.find_var(varname)
                    for varname in fetch_target_names
                ]

129 130 131
                if None in fetch_vars:
                    continue

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
                fetch_tensors = [var.get_tensor() for var in fetch_vars]

                if self.fetch_instance.return_np:
                    fetch_nps = []

                    for tensor in fetch_tensors:
                        lod = tensor.lod()

                        if len(lod) > 0:
                            raise RuntimeError(
                                "Some of your fetched tensors hold LoD information. \
                        They can not be completely cast to Python ndarray. We can not \
                        return LoDTensor itself directly, please choose another targets"
                            )

                        if tensor._is_initialized():
                            fetch_nps.append(np.array(tensor))
                        else:
                            fetch_nps.append(None)

                    fetch_handler(fetch_nps)
                else:
                    fetch_handler(fetch_tensors)
            else:
                time.sleep(1)
                elapsed_secs += 1

    def stop(self):
        self.running = False