communicator.cc 37.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
Q
Qiao Longfei 已提交
16
#include <gflags/gflags.h>
17
#include <paddle/fluid/framework/program_desc.h>
Q
Qiao Longfei 已提交
18
#include <chrono>  // NOLINT
19
#include <map>
Q
Qiao Longfei 已提交
20
#include <thread>  // NOLINT
21
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
23 24
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
26
#include "paddle/fluid/framework/variable_helper.h"
27
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
28 29 30
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"

31 32 33
DECLARE_int32(communicator_max_merge_var_num);
DECLARE_int32(communicator_send_queue_size);

Q
Qiao Longfei 已提交
34 35
DEFINE_bool(communicator_independent_recv_thread, true,
            "use an independent to recv vars from parameter server");
36
DEFINE_int32(communicator_min_send_grad_num_before_recv, 20,
37
             "max grad num to send before recv parameters");
38
DEFINE_int32(communicator_thread_pool_size, 5, "thread num to do send or recv");
Q
Qiao Longfei 已提交
39 40 41
DEFINE_int32(communicator_send_wait_times, 5,
             "times that send thread will wait if merge num does not reach "
             "max_merge_var_num");
42 43
DEFINE_bool(communicator_fake_rpc, false,
            "fake mode does not really send any thing");
44 45
DEFINE_bool(communicator_merge_sparse_grad, true,
            "merge sparse gradient before sending");
46 47
DEFINE_int32(communicator_merge_sparse_bucket, 2000,
             "number of threads for sparse var");
Q
Qiao Longfei 已提交
48

Q
Qiao Longfei 已提交
49 50 51 52
namespace paddle {
namespace operators {
namespace distributed {

Q
Qiao Longfei 已提交
53 54 55 56 57 58
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

59 60 61 62 63 64 65
template <typename T>
inline void VSUB(int n, const T *x, const T *y, T *z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

T
tangwei12 已提交
66
std::once_flag Communicator::init_flag_;
67
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
68

T
tangwei12 已提交
69 70 71 72 73 74 75
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

Q
Qiao Longfei 已提交
76 77 78 79 80
  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
81 82
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
Q
Qiao Longfei 已提交
83 84
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
85 86
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
Q
Qiao Longfei 已提交
87
  VLOG(0) << "communicator_max_merge_var_num: "
88 89
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
90 91
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              FLAGS_communicator_send_queue_size);
    }
    send_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
Q
Qiao Longfei 已提交
111 112 113
  }
}

T
tangwei12 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
void AsyncCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                 Scope *param_scope) {
  using RpcCtxMap = operators::distributed::RpcCtxMap;
  VLOG(3) << "ProcessGraph";
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
          send_var_name, send_varnames, epmap, height_section, trainer_id);
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
      PADDLE_ENFORCE_GT(do_not_run, 0, "recv should not run!");
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::AsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

AsyncCommunicator::~AsyncCommunicator() {
159 160 161 162
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
163 164 165
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (recv_thread_) recv_thread_->join();
166 167 168 169
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
170 171
}

T
tangwei12 已提交
172
void AsyncCommunicator::SendThread() {
Q
Qiao Longfei 已提交
173
  VLOG(3) << "SendThread start!";
Q
Qiao Longfei 已提交
174 175 176
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
Q
Qiao Longfei 已提交
177
    VLOG(3) << "run send graph";
Q
Qiao Longfei 已提交
178
    auto before_run_send_graph = GetCurrentUS();
Q
Qiao Longfei 已提交
179
    for (auto &iter : send_varname_to_queue_) {
Q
Qiao Longfei 已提交
180 181
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
Q
Qiao Longfei 已提交
182
      if (var_queue->Size() > 0) {
Q
Qiao Longfei 已提交
183
        auto send_task = [this, &var_name, &var_queue] {
Q
Qiao Longfei 已提交
184
          VLOG(3) << var_name << " merge and send";
Q
Qiao Longfei 已提交
185 186
          std::vector<std::shared_ptr<Variable>> vars;
          size_t merged_var_num = 0;
Q
Qiao Longfei 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
          size_t wait_times = 0;
          while (merged_var_num < FLAGS_communicator_max_merge_var_num) {
            if (var_queue->Size() == 0) {
              VLOG(3) << "wait_times -> " << wait_times;
              if (wait_times >= FLAGS_communicator_send_wait_times) {
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;

              vars.push_back(var_queue->Pop());
              // only count the send number of the first var
              if (var_name == send_varname_to_queue_.begin()->first) {
                grad_num_.fetch_add(1, std::memory_order_relaxed);
              }
              merged_var_num++;
206
            }
Q
Qiao Longfei 已提交
207
          }
Q
Qiao Longfei 已提交
208
          auto before_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
209
          MergeVars(var_name, vars, send_scope_.get());
Q
Qiao Longfei 已提交
210
          auto after_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
211 212
          VLOG(3) << "merge " << merged_var_num << " " << var_name
                  << " use time " << after_merge - before_merge;
Q
Qiao Longfei 已提交
213 214
          auto send_functor = distributed::ParameterSend<float>();
          auto &ctx = send_varname_to_ctx_.at(var_name);
215
          if (!FLAGS_communicator_fake_rpc) {
216
            send_functor(ctx, *send_scope_, true, 1);
217
          }
Q
Qiao Longfei 已提交
218 219 220
          auto after_send = GetCurrentUS();
          VLOG(3) << "send " << var_name << " use time "
                  << after_send - after_merge;
Q
Qiao Longfei 已提交
221 222 223
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
224
      } else {
225
        VLOG(4) << var_name << " queue empty";
Q
Qiao Longfei 已提交
226
      }
Q
Qiao Longfei 已提交
227 228 229
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
230
    }
Q
Qiao Longfei 已提交
231
    auto after_run_send_graph = GetCurrentUS();
232 233 234

    VLOG(3) << "run send graph use time "
            << after_run_send_graph - before_run_send_graph;
T
tangwei12 已提交
235
    Recv();
Q
Qiao Longfei 已提交
236
  }
237
  VLOG(0) << "communicator stopped, send thread exit";
Q
Qiao Longfei 已提交
238 239
}

T
tangwei12 已提交
240
void AsyncCommunicator::RecvThread() {
Q
Qiao Longfei 已提交
241
  VLOG(3) << "RecvThread start!";
Q
Qiao Longfei 已提交
242
  while (running_) {
243
    auto grad_num = grad_num_.load();
244
    if (grad_num > FLAGS_communicator_min_send_grad_num_before_recv) {
245 246 247 248 249 250
      VLOG(1) << "current grad num " << grad_num;
      RecvAll();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
Q
Qiao Longfei 已提交
251
  }
252
  VLOG(0) << "communicator stopped, recv thread exit";
Q
Qiao Longfei 已提交
253 254
}

T
tangwei12 已提交
255 256
void AsyncCommunicator::Send(const std::string &var_name,
                             const framework::Scope &scope) {
Q
Qiao Longfei 已提交
257 258 259 260
  VLOG(3) << "communicator send " << var_name;
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited");
261 262 263 264 265
  if (grad_var->IsType<framework::SelectedRows>() &&
      !FLAGS_communicator_merge_sparse_grad) {
    auto send_functor = distributed::ParameterSend<float>();
    auto &ctx = send_varname_to_ctx_.at(var_name);
    if (!FLAGS_communicator_fake_rpc) {
266
      send_functor(ctx, scope, true, 1);
267 268 269 270 271 272 273 274
    }
  } else {
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*grad_var, tmp_grad_var.get());
    auto &queue = send_varname_to_queue_.at(var_name);
    VLOG(3) << "send " << var_name << " queue size " << queue->Size();
    queue->Push(tmp_grad_var);
  }
Q
Qiao Longfei 已提交
275 276
}

T
tangwei12 已提交
277 278 279
void AsyncCommunicator::Recv() {
  if (FLAGS_communicator_independent_recv_thread) {
    return;
280 281
  }

T
tangwei12 已提交
282 283 284 285 286 287
  auto grad_num = grad_num_.load();
  if (grad_num > 0) {
    RecvAll();
    grad_num_.store(0);
  } else {
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
288 289 290
  }
}

T
tangwei12 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
void AsyncCommunicator::RecvAll() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
      if (!FLAGS_communicator_fake_rpc) {
        recv_functor(iter.second, *recv_scope_);
      }
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
  VLOG(1) << "run recv graph use time " << after_recv - before_send;
313 314
}

T
tangwei12 已提交
315
void AsyncCommunicator::Start() {
316 317 318 319 320 321 322 323
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
T
tangwei12 已提交
324
        new std::thread(std::bind(&AsyncCommunicator::SendThread, this)));
325 326
    if (FLAGS_communicator_independent_recv_thread) {
      recv_thread_.reset(
T
tangwei12 已提交
327
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
328 329 330 331
    }
  }
}

T
tangwei12 已提交
332
void AsyncCommunicator::Stop() {
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
Q
Qiao Longfei 已提交
348
  }
349
  VLOG(0) << "Communicator stop done";
Q
Qiao Longfei 已提交
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
void AsyncCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                             const std::vector<std::string> &sparse_var_tables,
                             const framework::Scope &scope) {}

void AsyncCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *param_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {}

GeoSgdCommunicator::~GeoSgdCommunicator() {
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
}

void GeoSgdCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *training_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {
  training_scope_ = std::move(training_scope);
  trainer_nums_ = std::move(trainers);
  geo_need_push_nums_ = std::move(geo_need_push_nums);

  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
  VLOG(0) << "communicator_max_merge_var_num: "
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
  VLOG(0) << "Trainer nums: " << trainer_nums_;
  VLOG(0) << "geo_sgd_push_before_local_train_nums: " << geo_need_push_nums_;
  VLOG(0) << "communicator_merge_sparse_bucket "
          << FLAGS_communicator_merge_sparse_bucket;

  // process var info from transpiler
  for (auto &iter : vars_info) {
    // change var name in delta scope: "var" -> "var.delta"
    std::string var_name = iter.first;
    std::string send_var_name = VarToDeltaVar(var_name);
    std::vector<std::string> vars_names = iter.second["var_names"];
    std::vector<std::string> send_var_names;
    for (auto origin_var_name : vars_names) {
      send_var_names.push_back(VarToDeltaVar(origin_var_name));
    }

    // get vars section for split
    std::vector<std::string> vars_sections_str = iter.second["sections"];
    std::vector<int64_t> vars_sections_int = {};
    for (std::string str : vars_sections_str) {
      int64_t str2i = std::stol(str.c_str());
      vars_sections_int.push_back(str2i);
    }

    std::vector<std::string> vars_epmap = iter.second["epmap"];

    // record var is sparse or not
    bool is_sparse = iter.second["is_sparse"].front() == std::string("True");
    var_list_[var_name] = is_sparse;

    send_varname_to_ctx_[send_var_name] = operators::distributed::RpcContext(
        send_var_name, send_var_names, vars_epmap, vars_sections_int, 0);
    recv_varname_to_ctx_[var_name] = operators::distributed::RpcContext(
        var_name, vars_names, vars_epmap, vars_sections_int, 0);
434 435 436 437 438 439 440 441

    // record sparse section
    if (is_sparse) {
      need_thread_nums_ +=
          send_varname_to_ctx_[send_var_name].height_sections.size();
      absolute_section_[var_name] = operators::ToAbsoluteSection(
          send_varname_to_ctx_[send_var_name].height_sections);
    }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
  }

  if (send_varname_to_ctx_.size() == 0 && recv_varname_to_ctx_.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  send_threadpool_.reset(new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  need_push_queue_ =
      std::make_shared<BlockingQueue<std::shared_ptr<SparseIdsMap>>>(
          geo_need_push_nums);
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoSgdCommunicator::Start() {
  VLOG(0) << "Geo Sgd Communicator start";
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    VLOG(0) << "start send thread ";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
        new std::thread(std::bind(&GeoSgdCommunicator::SendThread, this)));
  }
}

void GeoSgdCommunicator::Stop() {
  VLOG(0) << "Geo Sgd Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Geo Sgd Communicator stop done";
}

void GeoSgdCommunicator::Send(const std::string &var_name,
                              const framework::Scope &scope) {
  // when execute trainer startup program, recv parameter from pserver
  // training_scope & pserver_scope param will copy it
  if (var_name == "param_init") {
    for (auto &iter : var_list_) {
      // For sparse param, old_scope store LoDTensor,
      // pserver_scope store SelectedRows.
      auto local_var_name = iter.first;
      if (var_list_[local_var_name] == true) {
        GeoSgdSparseParamInit(training_scope_, pserver_scope_.get(),
                              local_var_name);
      } else {
        GeoSgdDenseParamInit(training_scope_, pserver_scope_.get(),
                             local_var_name);
      }
      GeoSgdDenseParamInit(training_scope_, old_scope_.get(), local_var_name);
    }
  }
}

void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                              const std::vector<std::string> &sparse_var_tables,
                              const framework::Scope &scope) {
  // SparseIdsMap = std::unordered_map<std::string,std::unordered_set<int64_t>>
  std::shared_ptr<SparseIdsMap> ids_table = std::make_shared<SparseIdsMap>();
511
  auto before_run_send = GetCurrentUS();
512 513 514
  for (size_t i = 0; i < sparse_var_tables.size(); i++) {
    if (ids_table->find(sparse_var_tables[i]) == ids_table->end()) {
      // create empty set for new sparse var
515 516 517 518 519 520
      auto splited_var_nums =
          recv_varname_to_ctx_[sparse_var_tables[i]].splited_var_names.size();
      ids_table->insert(
          std::pair<std::string, std::vector<std::unordered_set<int64_t>>>(
              sparse_var_tables[i],
              std::vector<std::unordered_set<int64_t>>{splited_var_nums}));
521 522 523 524 525 526 527
    }
    auto *var = scope.FindVar(sparse_var_names[i]);
    auto var_tensor = var->Get<framework::LoDTensor>();
    int element_number = var_tensor.numel();
    int *var_mutable_data = var_tensor.mutable_data<int>(var_tensor.place());
    // insert ids which has not been record
    for (size_t j = 0; j < element_number; j++) {
528 529 530
      auto ep_idx = GetSectionIndex(var_mutable_data[j],
                                    absolute_section_[sparse_var_tables[i]]);
      ids_table->at(sparse_var_tables[i])[ep_idx].insert(var_mutable_data[j]);
531 532 533 534 535
      VLOG(4) << "Sparse var " << sparse_var_tables[i] << " insert "
              << var_mutable_data[j];
    }
  }
  need_push_queue_->Push(ids_table);
536 537
  auto after_run_send = GetCurrentUS();
  VLOG(3) << "run send_op use time " << after_run_send - before_run_send;
538 539 540 541 542 543 544 545 546 547
}

void GeoSgdCommunicator::SendThread() {
  VLOG(0) << "SendThread start!";
  auto before_run_training = GetCurrentUS();

  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());

548 549
    size_t wait_times = 0;
    while (ids_send_vec_.size() < geo_need_push_nums_) {
550 551
      VLOG(4) << "ids_send_vec_ Size: " << ids_send_vec_.size();
      if (need_push_queue_->Size() > 0) {
552
        wait_times = 0;
553 554
        ids_send_vec_.push_back(*(need_push_queue_->Pop()));
        VLOG(4) << "ids_send_vec_ pushed";
555 556 557 558 559 560 561 562
      } else if (need_push_queue_->Size() == 0) {
        VLOG(3) << "wait_times -> " << wait_times;
        if (wait_times >= FLAGS_communicator_send_wait_times) {
          break;
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        wait_times++;
        continue;
563 564 565 566 567 568 569 570 571 572 573 574
      }
    }

    if (ids_send_vec_.size() >= geo_need_push_nums_) {
      auto after_run_training = GetCurrentUS();
      VLOG(3) << "run Training use time "
              << after_run_training - before_run_training;
      before_run_training = GetCurrentUS();
      VLOG(3) << "Start send after get need_push_num";

      for (auto &iter : send_varname_to_ctx_) {
        auto &var_name = iter.first;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        if (var_list_[DeltaVarToVar(var_name)] == true) {
          // sparse var: merge->send->recv
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
              auto ids_set =
                  SparseIdsMerge(ids_send_vec_, var_name, splited_var_name);
              SendUpdateSparseVars(var_name, splited_var_name, ids_set);
              RecvUpdateSparseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
              VLOG(1) << "run GEO-SGD var " << splited_var_name << " use time "
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
590
          }
591 592 593 594 595 596 597 598 599 600 601 602
        } else {
          auto send_task = [this, &var_name] {
            auto before_run_geo = GetCurrentUS();
            SendUpdateDenseVars(var_name);
            RecvUpdateDenseVars(var_name);
            auto after_run_geo = GetCurrentUS();
            VLOG(3) << "run GEO-SGD var " << var_name << " use time "
                    << after_run_geo - before_run_geo;
          };
          task_futures.emplace_back(
              send_threadpool_->enqueue(std::move(send_task)));
        }
603
      }
604 605 606 607
      for (auto &task_f : task_futures) {
        task_f.wait();
      }
      ids_send_vec_.clear();
608 609 610 611 612
    }
  }
}

std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
613 614
    const std::vector<SparseIdsMap> &ids_send_vec, const std::string &var_name,
    const std::string &splited_var_name) {
615
  // every batch has some sparse id, merge them into one unoredered_set
616 617
  VLOG(3) << "Sparse Ids merge var: " << var_name
          << " splited var: " << splited_var_name;
618
  auto before_run_ids_merge_ = GetCurrentUS();
619 620
  auto origin_var_name = DeltaVarToVar(var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
621
  std::unordered_set<int64_t> ids_set;
622

623
  for (auto ids_map : ids_send_vec) {
624
    for (auto id : ids_map[origin_var_name][splited_var_index]) {
625 626 627 628
      ids_set.insert(id);
    }
  }
  auto after_run_ids_merge_ = GetCurrentUS();
629 630
  VLOG(3) << "run SparseIdsMerge " << splited_var_name << " has nums "
          << ids_set.size() << " use time "
631 632 633 634 635 636 637
          << after_run_ids_merge_ - before_run_ids_merge_;
  return ids_set;
}

void GeoSgdCommunicator::SendUpdateDenseVars(const std::string &var_name) {
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
638 639
  // var_name: param.delta
  auto origin_var_name = DeltaVarToVar(var_name);
640 641
  auto before_run_send_dense = GetCurrentUS();

642
  auto *var_x = training_scope_->FindVar(origin_var_name);
643 644
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

645
  auto *var_y = old_scope_->FindVar(origin_var_name);
646 647 648 649 650 651
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto dims = var_x_tensor.dims();

  // create temp var for sub
652
  auto *var_y_sub = old_scope_->Var(var_name);
653 654 655 656
  framework::CopyVariable(*var_y, var_y_sub);
  auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

  // create delta var in delta scope
657
  auto *var_z = delta_scope_->Var(var_name);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  auto *var_z_tensor = var_z->GetMutable<framework::LoDTensor>();
  var_z_tensor->mutable_data<float>(dims, var_x_tensor.place());
  var_z_tensor->set_lod(var_x_tensor.lod());

  math::SetConstant<paddle::platform::CPUDeviceContext, float> constant_functor;
  constant_functor(cpu_ctx, var_z_tensor, static_cast<float>(0));

  // calc sub = var_training - var_old
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  blas.SCAL(var_y_sub_tensor.numel(), -1,
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  blas.VADD(var_x_tensor.numel(),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_delta = sub / trainer_nums
  float trainer_param = 1.0 / static_cast<float>(trainer_nums_);
  blas.SCAL(var_z_tensor->numel(), trainer_param,
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_old += var_delta
  blas.VADD(var_y_tensor.numel(),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()));

  auto after_run_send_dense = GetCurrentUS();
  VLOG(3) << "run send update dense var " << var_name << " use time "
          << after_run_send_dense - before_run_send_dense;
688 689 690 691 692 693 694 695 696

  auto send_functor = distributed::ParameterSend<float>();
  auto &ctx = send_varname_to_ctx_.at(var_name);

  auto before_send_dense = GetCurrentUS();
  send_functor(ctx, *delta_scope_.get(), true, 1);
  auto after_send_denxe = GetCurrentUS();
  VLOG(3) << "send " << var_name << " use time "
          << after_send_denxe - before_send_dense;
697 698 699
}

void GeoSgdCommunicator::SendUpdateSparseVars(
700 701
    const std::string &var_name, const std::string &splited_var_name,
    const std::unordered_set<int64_t> &ids_table) {
702 703
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
704 705
  // var_name: param.delta, splited_var_name: param.block0.delta
  // origin_var_name: param
706 707 708
  auto before_run_send_sparse = GetCurrentUS();

  auto ids_num = ids_table.size();
709 710 711 712
  VLOG(4) << "Sparse Ids nums is : " << ids_num;
  auto origin_var_name = DeltaVarToVar(var_name);

  auto *var_x = training_scope_->FindVar(origin_var_name);
713 714
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

715
  auto *var_y = old_scope_.get()->FindVar(origin_var_name);
716 717 718 719 720 721 722 723
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
  auto row_numel = dims[1];

  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

724
  auto *var_z = delta_scope_->Var(splited_var_name);
725 726 727 728 729 730 731
  auto *var_z_select_rows = var_z->GetMutable<framework::SelectedRows>();
  auto *var_z_value = var_z_select_rows->mutable_value();
  var_z_value->Resize({static_cast<int64_t>(ids_num), row_numel});
  auto *z_value = var_z_value->mutable_data<float>(var_x_tensor.place());

  std::vector<int64_t> new_rows;
  new_rows.insert(new_rows.begin(), ids_table.begin(), ids_table.end());
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  float avg = 1 / static_cast<float>(trainer_nums_);
  for (int y = 0; y < new_rows.size(); y++) {
    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    std::vector<float> row_delta(row_numel, 0);
    VSUB<float>(row_numel, x_val, y_val, row_delta.data());
    blas.SCAL(row_numel, avg, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), y_val, y_val);
    blas.VCOPY(row_numel, row_delta.data(), z_val);
748
  }
749

750
  auto after_run_send_sparse = GetCurrentUS();
751
  VLOG(3) << "run send update sparse var " << splited_var_name << " use time "
752
          << after_run_send_sparse - before_run_send_sparse;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  std::vector<int64_t> send_rows;
  send_rows.reserve(new_rows.size());
  for (auto idx : new_rows) {
    send_rows.push_back(idx -
                        absolute_section_[origin_var_name][splited_var_index]);
  }
  var_z_select_rows->set_rows(send_rows);
  var_z_select_rows->set_height(
      send_varname_to_ctx_[var_name].height_sections[splited_var_index]);

  auto before_send_sparse = GetCurrentUS();
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_sparse = GetCurrentUS();
  VLOG(3) << "send " << splited_var_name << " has nums " << new_rows.size()
          << " use time " << after_send_sparse - before_send_sparse;
770 771
}

772
void GeoSgdCommunicator::RecvUpdateDenseVars(const std::string &var_name) {
773 774
  // calc var_training += var_pserver - var_old
  // calc var_old = var_pserver
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
  // var_name: param.delta

  // step1: recv dense var from pserver
  auto origin_var_name = DeltaVarToVar(var_name);

  auto before_run_recv = GetCurrentUS();
  auto recv_functor = distributed::ParameterRecv<float>();
  recv_functor(recv_varname_to_ctx_[origin_var_name], *pserver_scope_.get());
  auto after_run_recv = GetCurrentUS();
  VLOG(3) << "recv var " << origin_var_name << " use time "
          << after_run_recv - before_run_recv;

  // step2: update dense var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_->FindVar(origin_var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto *var_y_sub = old_scope_->Var(origin_var_name);
  framework::CopyVariable(*var_y, var_y_sub);
  auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

  auto *var_z = pserver_scope_.get()->FindVar(origin_var_name);
  auto var_z_tensor = var_z->Get<framework::LoDTensor>();

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  // calc sub = pserver - old
  blas.SCAL(var_y_sub_tensor.numel(), -1,
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  blas.VADD(var_y_tensor.numel(),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_z_tensor.mutable_data<float>(var_z_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  // calc recv += sub
  blas.VADD(var_x_tensor.numel(),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()));
  // calc old = pserver
  framework::CopyVariable(*var_z, var_y);
  auto after_run_update = GetCurrentUS();
  VLOG(3) << "dese var update " << origin_var_name << " use time "
          << after_run_update - before_run_update;
}

void GeoSgdCommunicator::RecvUpdateSparseVars(
    const std::string &var_name, const std::string &splited_var_name) {
  // step 1: recv splited var from pserver
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto origin_var_name = DeltaVarToVar(var_name);
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);

830
  auto before_run_recv = GetCurrentUS();
831 832 833 834
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
  auto after_run_recv = GetCurrentUS();
  VLOG(3) << "recv var " << origin_splited_var_name << " use time "
          << after_run_recv - before_run_recv;
835

836 837 838
  // step 2: update sparse var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
839
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
840
  auto dims = var_x_tensor.dims();
841 842
  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());

843
  auto *var_y = old_scope_->FindVar(origin_var_name);
844 845 846
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

847 848 849 850 851 852 853 854 855 856
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
  auto var_z_slr = var_z->GetMutable<framework::SelectedRows>();
  auto row_size = var_z_slr->rows().size();

  std::vector<int64_t> new_rows;
  new_rows.reserve(row_size);

  for (auto ids : var_z_slr->rows()) {
    new_rows.push_back(ids +
                       absolute_section_[origin_var_name][splited_var_index]);
857 858
  }

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  auto *new_value = var_z_slr->mutable_value();
  auto row_numel = dims[1];
  auto *z_value = new_value->mutable_data<float>(var_x_tensor.place());

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  for (int y = 0; y < new_rows.size(); y++) {
    std::vector<float> row_delta(row_numel, 0);

    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    VSUB(row_numel, z_val, y_val, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), x_val, x_val);
    blas.VCOPY(row_numel, z_val, y_val);
  }

  auto after_run_update = GetCurrentUS();
  VLOG(3) << "sparse var recv update " << origin_splited_var_name << " has num "
          << new_rows.size() << " use time "
          << after_run_update - before_run_update;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
}

void GeoSgdCommunicator::GeoSgdSparseParamInit(framework::Scope *scope_x,
                                               framework::Scope *scope_y,
                                               const std::string var_name) {
  // create selectedrows var from lodtensor var info
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);

  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  auto *var_y_select_rows = var_y->GetMutable<framework::SelectedRows>();

  auto dims = var_x_tensor.dims();
  auto rows = dims[0];
  auto row_numel = dims[1];

  var_y_select_rows->set_height(rows);
  std::vector<int64_t> new_rows{};
  var_y_select_rows->set_rows(new_rows);
  auto *var_y_value = var_y_select_rows->mutable_value();
  var_y_value->Resize({rows, row_numel});
  var_y_value->mutable_data<float>(var_x_tensor.place());
}

void GeoSgdCommunicator::GeoSgdDenseParamInit(framework::Scope *scope_x,
                                              framework::Scope *scope_y,
                                              const std::string var_name) {
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);
  framework::CopyVariable(*var_x, var_y);
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
void GeoSgdCommunicator::RpcSend(const std::string &origin_var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto trainer_id = send_varname_to_ctx_[origin_var_name].trainer_id;
  auto endpoint =
      send_varname_to_ctx_[origin_var_name].epmap[splited_var_index];

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_send = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
  rpc_client->AsyncSendVar(endpoint, cpu_ctx_send, *delta_scope_.get(),
                           splited_var_name);
}

void GeoSgdCommunicator::RpcRecv(const std::string &var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto train_id = recv_varname_to_ctx_[var_name].trainer_id;
  auto endpoint = recv_varname_to_ctx_[var_name].epmap[splited_var_index];
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_recv = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(train_id);
  pserver_scope_->Var(splited_var_name);
  rpc_client->AsyncGetVar(endpoint, cpu_ctx_recv, *pserver_scope_.get(),
                          splited_var_name, splited_var_name, splited_var_name);
}

void GeoSgdCommunicator::Recv() {}

946 947 948 949 950 951 952
void GeoSgdCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                  const RpcCtxMap &recv_varname_to_ctx,
                                  Scope *recv_scope) {}

void GeoSgdCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                  Scope *recv_scope) {}

Q
Qiao Longfei 已提交
953 954 955
}  // namespace distributed
}  // namespace operators
}  // namespace paddle