test_pixel_shuffle.py 7.9 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
R
ruri 已提交
19

R
ruri 已提交
20
from op_test import OpTest
R
ruri 已提交
21 22 23 24
import paddle
import paddle.nn.functional as F
import paddle.fluid.core as core
import paddle.fluid as fluid
R
ruri 已提交
25 26


R
ruri 已提交
27 28 29
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
R
ruri 已提交
30 31 32 33 34 35 36 37
        new_shape = (n, c // (up_factor * up_factor), up_factor, up_factor, h,
                     w)
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        return npresult
    else:
        n, h, w, c = x.shape
        new_shape = (n, h, w, c // (up_factor * up_factor), up_factor,
                     up_factor)
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
67 68 69

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
70 71 72 73
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
74 75 76 77 78 79 80 81

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


R
ruri 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            x_1 = paddle.data(name="x", shape=[2, 9, 4, 4], dtype="float64")
            x_2 = paddle.data(name="x2", shape=[2, 4, 4, 9], dtype="float64")
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
            res_1 = exe.run(fluid.default_main_program(),
                            feed={"x": self.x_1_np},
                            fetch_list=out_1,
                            use_prune=True)

            res_2 = exe.run(fluid.default_main_program(),
                            feed={"x2": self.x_2_np},
                            fetch_list=out_2,
                            use_prune=True)

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            x_1 = paddle.data(name="x", shape=[2, 9, 4, 4], dtype="float64")
            x_2 = paddle.data(name="x2", shape=[2, 4, 4, 9], dtype="float64")
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
            res_1 = exe.run(fluid.default_main_program(),
                            feed={"x": self.x_1_np},
                            fetch_list=out_1,
                            use_prune=True)

            res_2 = exe.run(fluid.default_main_program(),
                            feed={"x2": self.x_2_np},
                            fetch_list=out_2,
                            use_prune=True)

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format)
            result = pixel_shuffle(paddle.to_tensor(x))

            self.assertTrue(np.allclose(result.numpy(), npresult))

            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format)
            self.assertTrue(np.allclose(result_functional.numpy(), npresult))

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
218 219
if __name__ == '__main__':
    unittest.main()