partial_program.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
import paddle.compat as cpt


class PartialProgramLayer(layers.Layer):
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
        **1. It should not be called directly and is used to train dygraph by static mode.
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
        self.inputs = inputs
        self.outputs = outputs
        self._params = parameters
        self._infer_program = main_program
        self._train_program = self._append_backward_desc()
        # Switch infer or train by train() and eval()
        self._trace_program = None
        self._set_grad_type(self._params)
        self._inner_scope = core.Scope()
        # Set default mode to train
        self.train()

    @switch_to_static_graph
    def _append_backward_desc(self):
        program = self._infer_program.clone()
        targets = []
        for out in self.outputs:
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

    def train(self):
        # self.training is inherited from layers.Layer
        self.training = True
        self._trace_program = self._train_program

    def eval(self):
        self.training = False
        self._trace_program = self._infer_program

    def forward(self, inputs):
        in_vars, out_vars, tmp_scope_vec = self._prepare(inputs)

        framework._dygraph_tracer().trace_op(
            type='run_program',
            inputs={
                'X': valid_vars(in_vars),
                'Params': valid_vars(self._params)
            },
            outputs={'Out': valid_vars(out_vars),
                     'OutScope': tmp_scope_vec},
            attrs={
                'global_block': self._trace_program.desc.block(0),
                'start_op_index': 0,
                'end_op_index': self._infer_program.desc.block(0).op_size(),
                'is_test': not self.training
            })

        outs = out_vars
        if len(outs) == 1:
            outs = outs[0]
        return outs

    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
        # Convert variable into VarBase and feed in training data.
        input_vars = []
        for i, value in enumerate(inputs):
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
                    name=self.inputs[i].desc.name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
                var = value
                var.name = self.inputs[i].desc.name()
            else:
                continue
            input_vars.append(var)
        # Create VarBase to receive output data.
        out_vars = []
        for var in self.outputs:
            if not isinstance(var, framework.Variable):
                continue
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
            out_vars.append(var_base)

        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

        tmp_scope_vec.value().set_scope(self._inner_scope)

        return input_vars, out_vars, tmp_scope_vec

    def _set_grad_type(self, params):
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
            grad_var = self._train_program.desc.block(0).find_var(
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())


def valid_vars(vars):
    """
    Note: run_program_op.InferShape requires `X`/'Out' not be null.
    But it's common in dy2static, fake varBase is created to handle the
    problem.
    """
    if vars:
        return vars
    return [
        core.VarBase(
            value=[1],
            name='Fake_var',
            place=framework._current_expected_place())
    ]


def append_grad_suffix(name):
    """
    Append grad suffix to the given variable name.
    e.g. x ==> x@GRAD
    """
    suffix = core.kGradVarSuffix()
    name = cpt.to_text(name)
    if suffix not in name:
        name = name + suffix
    return name


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)