sequence_pad_op.cc 7.7 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/sequence_pad_op.h"

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
Y
yangyaming 已提交
25 26 27
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequencePadOp should not be null.");
28 29
    PADDLE_ENFORCE(ctx->HasInput("PadValue"),
                   "Input(PadValue) of SequencePadOp should not be null.");
Y
yangyaming 已提交
30 31 32 33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequencePadOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
34 35 36 37 38 39 40 41
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "The rank of Input(x) can't be less than 2.");
    auto time_step_dims = framework::slice_ddim(x_dims, 1, x_dims.size());
    auto pad_value_dims = ctx->GetInputDim("PadValue");
    PADDLE_ENFORCE(pad_value_dims == framework::make_ddim({1}) ||
                       pad_value_dims == time_step_dims,
                   "The Input(PadValue) must be a scalar or a tensor whose "
                   "shape equals to time steps in sequences");
Y
yangyaming 已提交
42

43
    int batch_dim_size = -1;
Y
yangyaming 已提交
44 45

    if (ctx->IsRuntime()) {
46
      // run time
Y
yangyaming 已提交
47 48
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
49 50 51 52 53 54 55 56 57 58 59 60 61 62
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
      PADDLE_ENFORCE(!x_lod.empty(), "The Input(X) must hold lod info.");
      const auto& x_lod_0 = x_lod[0];
      PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
                        "The Input(X)'s lod info is corrupted.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], static_cast<int64_t>(x_lod_0.back()),
          "The Input(X)'s lod info mismatches the actual tensor shape.");

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      int padded_length = ctx->Attrs().Get<int>("padded_length");
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
63
      }
64 65 66 67
      PADDLE_ENFORCE_GE(padded_length, max_seq_len,
                        "The Attr(padded_length) must be -1 or an int greater "
                        "than the length of the longest original sequence.");
      batch_dim_size = padded_length * seq_num;
Y
yangyaming 已提交
68
    } else {
69
      // compile time
Y
yangyaming 已提交
70 71
      framework::VarDesc* x_desc =
          boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
72
      PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1);
Y
yangyaming 已提交
73 74
    }

75 76 77
    auto out_dims = x_dims;
    out_dims[0] = batch_dim_size;
    ctx->SetOutputDim("Out", out_dims);
Y
yangyaming 已提交
78 79 80 81 82
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
83
  void Make() override {
Y
yangyaming 已提交
84 85
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
    AddAttr<int>(
        "padded_length",
        "The length of padded sequences. It can be setted to -1 or "
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
103
    AddComment(R"DOC(
F
fengjiayi 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
      then we get 1-level LoDTensor:
          Out.lod = [[0,       4,          8]]
          Out.data = [a, b, 0, 0, c, d, e, 0]
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
      then we get 1-level LoDTensor:
          Out.lod = [[0,                       3,                           6]]
          Out.data = [[a1, a2], [b1, b2], [0, 0], [c1, c2], [d1, d2], [e1, e2]]

      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
      then we get 1-level LoDTensor:
          Out.lod = [[0,                         3,                           6]]
          Out.data = [[a1, a2], [b1, b2], [p1, p2], [c1, c2], [d1, d2], [e1, e2]]
Y
yangyaming 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequencePadGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) of SequencePadGradOp should not be null.");

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp);
REGISTER_OP_CPU_KERNEL(
    sequence_pad,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_pad_grad,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);