predict.py 4.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
from optparse import OptionParser
18 19
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import integer_value_sequence
Z
zhangjinchao01 已提交
20 21 22 23
from paddle.trainer.config_parser import parse_config

"""
Usage: run following command to show help message.
24
  python predict.py -h
Z
zhangjinchao01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
"""

class SentimentPrediction():
    def __init__(self, train_conf, dict_file, model_dir=None, label_file = None):
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """
        self.train_conf = train_conf
        self.dict_file = dict_file
        self.word_dict = {}
        self.dict_dim = self.load_dict()
        self.model_dir = model_dir
        if model_dir is None:
            self.model_dir = os.path.dirname(train_conf)

        self.label = None
        if label_file is not None:
            self.load_label(label_file)

        conf = parse_config(train_conf, "is_predict=1")
        self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config)
        self.network.loadParameters(self.model_dir)
49 50
        slots = [integer_value_sequence(self.dict_dim)]
        self.converter = DataProviderConverter(slots)
Z
zhangjinchao01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

    def load_dict(self):
        """
        Load dictionary from self.dict_file.
        """
        for line_count, line in enumerate(open(self.dict_file, 'r')):
            self.word_dict[line.strip().split('\t')[0]] = line_count
        return len(self.word_dict)

    def load_label(self, label_file):
        """
        Load label.
        """
        self.label={}
        for v in open(label_file, 'r'):
            self.label[int(v.split('\t')[1])] = v.split('\t')[0]

    def get_data(self, data_file):
        """
        Get input data of paddle format.
        """
        with open(data_file, 'r') as fdata:
            for line in fdata:
                words = line.strip().split()
                word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
                if not word_slot:
                    print "all words are not in dictionary: %s", line
                    continue
                yield [word_slot]

    def predict(self, data_file):
        """
        data_file: file name of input data.
        """
        input = self.converter(self.get_data(data_file))
        output = self.network.forwardTest(input)
        prob = output[0]["value"]
        lab = np.argsort(-prob)
        if self.label is None:
            print("%s: predicting label is %d" % (data_file, lab[0][0]))
        else:
            print("%s: predicting label is %s" % (data_file, self.label[lab[0][0]]))

def option_parser():
    usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
    parser = OptionParser(usage="usage: %s [options]" % usage)
    parser.add_option("-n", "--tconf", action="store",
                      dest="train_conf", help="network config")
    parser.add_option("-d", "--dict", action="store",
                      dest="dict_file",help="dictionary file")
    parser.add_option("-b", "--label", action="store",
                      dest="label", default=None,
                      help="dictionary file")
    parser.add_option("-i", "--data", action="store",
                      dest="data", help="data file to predict")
    parser.add_option("-w", "--model", action="store",
                      dest="model_path", default=None,
                      help="model path")
    return parser.parse_args()

def main():
    options, args = option_parser()
    train_conf = options.train_conf
    data = options.data
    dict_file = options.dict_file
    model_path = options.model_path
    label = options.label
    swig_paddle.initPaddle("--use_gpu=0")
    predict = SentimentPrediction(train_conf, dict_file, model_path, label)
    predict.predict(data)

if __name__ == '__main__':
    main()