varbase_patch_methods.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16 17 18
from .. import framework
from .. import core
from . import BackwardStrategy
19 20
from ..framework import Variable, Parameter, ParamBase
from .base import switch_to_static_graph
21
import numpy as np
22
from .math_op_patch import monkey_patch_math_varbase
23 24 25


def monkey_patch_varbase():
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
53 54 55 56

        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph. 
        # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
        attr_not_need_keys = ['grad']
57 58 59
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
60 61 62 63 64 65
            attr_names = []
            for name in dir(self):
                if name not in attr_not_need_keys and not (
                        inspect.ismethod(getattr(self, name)) or
                        name.startswith('_')):
                    attr_names.append(name)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

81 82 83 84 85
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
86
            **This API is ONLY available in Dygraph mode**
87 88 89 90 91 92 93 94 95 96 97

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
98
                from paddle.fluid.dygraph import Linear
99 100
                import numpy as np

101
                data = np.ones([3, 1024], dtype='float32')
102
                with fluid.dygraph.guard():
103
                    linear = fluid.dygraph.Linear(1024, 4)
104
                    t = to_variable(data)
105
                    linear(t)  # call with default weight
106
                    custom_weight = np.random.randn(1024, 4).astype("float32")
107 108
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
132
    def backward(self, backward_strategy=None, retain_graph=False):
133 134
        """
        **Notes**:
T
tianshuo78520a 已提交
135
            **This API is ONLY available in Dygraph mode**
136 137 138 139 140

        Run backward of current Graph which starts from current Variable

        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
141 142 143 144
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
            like to add more ops to the built graph after calling this method(`backward`), set the parameter
            `retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
            Defaults to False.
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
        if framework.in_dygraph_mode():
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False

176 177
            self._run_backward(backward_strategy,
                               framework._dygraph_tracer(), retain_graph)
178 179
        else:
            raise ValueError(
T
tianshuo78520a 已提交
180
                "Variable.backward() is only available in DyGraph mode")
181 182 183 184 185

    @framework.dygraph_only
    def gradient(self):
        """
        **Notes**:
T
tianshuo78520a 已提交
186
            **This API is ONLY available in Dygraph mode**
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

        Get the Gradient of Current Variable

        Returns:
            ndarray: Numpy value of the gradient of current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._grad_ivar() is None:
215 216
            return None

217 218 219 220 221 222 223
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

224 225 226 227 228 229 230 231
    @property
    def grad(self):
        """
        The alias of gradient().
        """

        return self.gradient()

232 233
    def __str__(self):
        """
234
        Convert a VarBase object to a readable string.
235

236
        Returns(str): A readable string.
237 238 239 240

        Examples:
            .. code-block:: python

241
                import paddle
242
                paddle.disable_static()
243 244 245 246 247 248 249 250
                x = paddle.rand([1, 5])
                print(x)
                # Variable: eager_tmp_0
                #   - place: CUDAPlace(0)
                #   - shape: [1, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [0.645307 0.597973 0.732793 0.646921 0.540328]
251
                paddle.enable_static()
252
        """
253 254
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
255
            return 'Tensor: %s\n%s' % (self.name, str(tensor))
256
        else:
257
            return 'Tensor: %s, not initialized' % (self.name)
258 259 260 261

    @property
    def block(self):
        return framework.default_main_program().global_block()
262

263 264 265 266 267 268 269 270 271 272 273 274
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
275
        ("_to_static_var", _to_static_var), ("set_value", set_value),
276 277 278
        ("block", block), ("backward", backward), ("grad", grad),
        ("gradient", gradient), ("__str__", __str__), ("__repr__", __str__),
        ("__module__", "paddle"), ("__name__", "Tensor")):
279
        setattr(core.VarBase, method_name, method)
280 281 282

    # patch math methods for varbase
    monkey_patch_math_varbase()