flags.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "gflags/gflags.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#endif

/**
 * NOTE(paddle-dev): This file is designed to define all public FLAGS.
 */

/* Paddle initialization related */
DEFINE_int32(paddle_num_threads, 1,
             "Number of threads for each paddle instance.");

/* Operator related */
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");

/* CUDA related */
#ifdef PADDLE_WITH_CUDA
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");
#endif

/* CUDNN related */
#ifdef PADDLE_WITH_CUDA
DEFINE_bool(cudnn_deterministic, false,
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
            "true, the algorithm is deterministic.");

DEFINE_uint64(conv_workspace_size_limit,
              paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
              "cuDNN convolution workspace limit in MB unit.");

DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, default is False.");

DEFINE_int64(cudnn_exhaustive_search_times, -1,
             "Exhaustive search times for cuDNN convolution, "
             "default is -1, not exhaustive search");

// CUDNN_BATCHNORM_SPATIAL_PERSISTENT in batchnorm. This mode can be faster in
// some tasks because an optimized path may be selected for CUDNN_DATA_FLOAT
// and CUDNN_DATA_HALF data types, compute capability 6.0 or higher. The
// reason we set it to false by default is that this mode may use scaled
// atomic integer reduction that may cause a numerical overflow for certain
// input data range.
DEFINE_bool(cudnn_batchnorm_spatial_persistent, false,
            "Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
            "batch_norm, default is False.");
#endif

/* NCCL related */
#ifdef PADDLE_WITH_CUDA
// asynchronous nccl allreduce or synchronous issue:
// https://github.com/PaddlePaddle/Paddle/issues/15049
// If you want to change this default value, why?(gongwb)
DEFINE_bool(
    sync_nccl_allreduce, true,
    "If set true, will call `cudaStreamSynchronize(nccl_stream)`"
    "after allreduce, this mode can get better performance in some scenarios.");
#endif

/* Distributed related */
#ifdef PADDLE_WITH_DISTRIBUTE
DEFINE_int32(communicator_max_merge_var_num, 20,
             "max var num to merge and send");
DEFINE_int32(communicator_send_queue_size, 20,
             "queue size to recv gradient before send");
#endif

DEFINE_int32(dist_threadpool_size, 0,
             "number of threads used for distributed executed.");

/* Garbage collector related */
// Disable gc by default when inference library is built
#ifdef PADDLE_ON_INFERENCE
static const double kDefaultEagerDeleteTensorGB = -1;
#else
static const double kDefaultEagerDeleteTensorGB = 0;
#endif

DEFINE_double(
    eager_delete_tensor_gb, kDefaultEagerDeleteTensorGB,
    "Memory size threshold (GB) when the garbage collector clear tensors."
    "Disabled when this value is less than 0");

DEFINE_bool(fast_eager_deletion_mode, true,
            "Fast eager deletion mode. If enabled, memory would release "
            "immediately without waiting GPU kernel ends.");

DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
              "Fraction of eager deletion. If less than 1.0, all variables in "
              "the program would be sorted according to its memory size, and "
              "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
              "variables would be deleted.");

/* Allocator related */
DEFINE_string(allocator_strategy, "naive_best_fit",
              "The allocation strategy. naive_best_fit means the original best "
              "fit allocator of Fluid. "
              "auto_growth means the experimental auto-growth allocator. "
              "Enum in [naive_best_fit, auto_growth].");

DEFINE_double(fraction_of_cpu_memory_to_use, 1,
              "Default use 100% of CPU memory for PaddlePaddle,"
              "reserve the rest for page tables, etc");
DEFINE_uint64(initial_cpu_memory_in_mb, 500ul,
              "Initial CPU memory for PaddlePaddle, in MD unit.");

DEFINE_double(
    fraction_of_cuda_pinned_memory_to_use, 0.5,
    "Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
    "reserve the rest for page tables, etc");

#ifdef PADDLE_WITH_CUDA
#ifndef _WIN32
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif

DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");

DEFINE_uint64(
    initial_gpu_memory_in_mb, 0ul,
    "Allocate a trunk of gpu memory whose byte size is specified by "
    "the flag. Future memory usage will be allocated from the "
    "trunk. If the trunk doesn't have enough gpu memory, additional "
    "trunks of the gpu memory will be requested from gpu with size "
    "specified by FLAGS_reallocate_gpu_memory_in_mb until the gpu has "
    "no memory left for the additional trunk. Note: if you set this "
    "flag, the memory size set by "
    "FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
    "flag. If you don't set this flag, PaddlePaddle will use "
    "FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");

DEFINE_uint64(reallocate_gpu_memory_in_mb, 0ul,
              "If this flag is set, Paddle will reallocate the gpu memory with "
              "size specified by this flag. Else Paddle will reallocate by "
              "FLAGS_fraction_of_gpu_memory_to_use");
#endif