test_imperative_ptb_rnn.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import EMBEDDING
20
import paddle.fluid.framework as framework
J
JiabinYang 已提交
21 22 23
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
import numpy as np
24
from paddle.fluid.backward import append_backward
25 26 27


class SimpleLSTMRNN(fluid.imperative.Layer):
J
JiabinYang 已提交
28 29 30 31 32 33 34
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__()
35 36 37 38 39
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self.input = None
J
JiabinYang 已提交
40
        self.num_steps = num_steps
41

J
JiabinYang 已提交
42
    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.hidden_array = []
        self.cell_array = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = fluid.layers.create_parameter(
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                name="fc_weight1_" + str(i),
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(weight_1)
            bias_1 = fluid.layers.create_parameter(
                [self._hidden_size * 4],
                dtype="float32",
                name="fc_bias1_" + str(i),
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(bias_1)

J
JiabinYang 已提交
65
            pre_hidden = fluid.layers.slice(
66 67 68 69 70 71 72
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
73 74 75 76
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
77
        res = []
J
JiabinYang 已提交
78
        for index in range(self.num_steps):
79 80 81 82 83 84
            self.input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self.input = fluid.layers.reshape(
                self.input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
J
JiabinYang 已提交
85 86
                print("pre_hidden shape is:{}".format(pre_hidden.shape))
                print("input shape is:{}".format(self.input.shape))
87 88 89 90 91 92 93 94
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self.input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
J
JiabinYang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                print("gate_input shape is: {}".format(gate_input.shape))
                print("gate_input value is :{}".format(gate_input._numpy()))
                print("gate_input desc is :{}".format(gate_input))
                # i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
            #         #
            #         #         c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
            #         #             i) * fluid.layers.tanh(j)
            #         #         m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
            #         #
            #         #         self.hidden_array[k] = m
            #         #         self.cell_array[k] = c
            #         #         self.input = m
            #         #
            #         #         if self.dropout is not None and self.dropout > 0.0:
            #         #             self.input = fluid.layers.dropout(
            #         #                 self.input,
            #         #                 dropout_prob=self.dropout,
            #         #                 dropout_implementation='upscale_in_train')
            #         #
            #         #     res.append(
            #         #         fluid.layers.reshape(
            #         #             input, shape=[1, -1, self._hidden_size]))
            #         # real_res = fluid.layers.concat(res, 0)
            #         # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
            #         # last_hidden = fluid.layers.concat(self.hidden_array, 1)
            #         # last_hidden = fluid.layers.reshape(
            #         #     last_hidden, shape=[-1, self._num_layers, self._hidden_size])
            #         # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
            #         # last_cell = fluid.layers.concat(self.cell_array, 1)
            #         # last_cell = fluid.layers.reshape(
            #         #     last_cell, shape=[-1, self._num_layers, self._hidden_size])
            #         # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
            #         #
            # return real_res, last_hidden, last_cell
        return [1], [2], [3]
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145


class PtbModel(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
J
JiabinYang 已提交
146
        self.dropout = dropout
147 148
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
J
JiabinYang 已提交
149
            num_steps,
150 151 152 153 154 155 156 157 158 159 160 161 162 163
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = EMBEDDING(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))

    def _build_once(self, input, label, init_hidden, init_cell):
        self.softmax_weight = fluid.layers.create_parameter(
J
JiabinYang 已提交
164
            [self.hidden_size, self.vocab_size],
165 166 167
            dtype="float32",
            name="softmax_weight",
            default_initializer=fluid.initializer.UniformInitializer(
J
JiabinYang 已提交
168
                low=-self.init_scale, high=self.init_scale))
169
        self.softmax_bias = fluid.layers.create_parameter(
J
JiabinYang 已提交
170
            [self.vocab_size],
171 172 173
            dtype="float32",
            name='softmax_bias',
            default_initializer=fluid.initializer.UniformInitializer(
J
JiabinYang 已提交
174
                low=-self.init_scale, high=self.init_scale))
175 176

    def forward(self, input, label, init_hidden, init_cell):
J
JiabinYang 已提交
177

178 179
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])
J
JiabinYang 已提交
180

181 182 183 184 185 186 187 188 189 190 191
        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
J
JiabinYang 已提交
192
        print("init_c is {}".format(init_c))
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.reshape(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


class TestImperativePtbRnn(unittest.TestCase):
    def test_mnist_cpu_float32(self):
        seed = 90
J
JiabinYang 已提交
216 217 218 219 220 221
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
222 223 224 225 226 227

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
J
JiabinYang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            sgd = SGDOptimizer(learning_rate=1e-3)
            print("q")
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                dy_param_init = dict()
                if i == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init[param.name] = param._numpy()
                dy_loss._backward()
                sgd.minimize(dy_loss)
                dy_param_updated = dict()
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_updated[param.name] = param._numpy()


if __name__ == '__main__':
    unittest.main()