tester_helper.h 39.5 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
38
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
39
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
42
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
43
DEFINE_string(infer_model, "", "model path");
44 45
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
46
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
47
DEFINE_string(refer_result, "", "reference result for comparison");
48
DEFINE_int32(batch_size, 1, "batch size");
49
DEFINE_bool(ernie_large, false, "Test ernie large");
50 51
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
52
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
53 54
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
55 56 57
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
58 59 60
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
61 62
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
63 64
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
65
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
66
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
67
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
68 69 70
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
71
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
72

73 74
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
75

L
luotao1 已提交
76 77 78
namespace paddle {
namespace inference {

79 80
using paddle::framework::proto::VarType;

81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

94
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
95
  const auto *analysis_config =
96
      reinterpret_cast<const AnalysisConfig *>(config);
97
  if (use_analysis) {
98
    LOG(INFO) << *analysis_config;
99 100
    return;
  }
101
  LOG(INFO) << analysis_config->ToNativeConfig();
102
}
Y
Yan Chunwei 已提交
103

104 105 106 107 108 109 110 111
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);

    std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                    element_in_batch,
                1, static_cast<int64_t *>(labels.data.data()) + i);
  }

  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
  (*warmup_data)[0] = std::move(images);
  (*warmup_data)[1] = std::move(labels);
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
    auto labels = label_reader.NextBatch();
    inputs->emplace_back(
        std::vector<PaddleTensor>{std::move(images), std::move(labels)});
  }
}

247
// Compare result between two PaddleTensor
L
luotao1 已提交
248
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
249
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
250
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
251
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
252 253
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
254
    auto &ref_out = ref_outputs[i];
255 256
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
257
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
273
          CheckError(pdata_ref[j], pdata[j]);
T
tensor-tang 已提交
274 275 276
        }
        break;
      }
277 278 279 280 281 282 283 284
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
285 286 287 288 289 290 291 292
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = static_cast<uint8_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
293 294 295 296
    }
  }
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
313
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
314 315 316 317 318 319 320 321
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
322
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
323
        for (size_t j = 0; j < size; ++j) {
324
          CheckError(pdata_ref[j], pdata[j]);
325 326 327
        }
        break;
      }
L
luotao1 已提交
328 329 330
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
331
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
L
luotao1 已提交
332 333 334 335 336
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
337 338 339
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = ref_out.data<uint8_t>(&place, &ref_size);
340
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
341 342 343 344 345
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
346 347 348 349
    }
  }
}

350
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
351
    const PaddlePredictor::Config *config, bool use_analysis = true) {
352
  const auto *analysis_config =
353
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
354
  if (use_analysis) {
355
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
356
  }
357 358
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
359 360
}

361
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
362

363
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
364
                                                   int *num_ops) {
365
  std::unordered_map<std::string, int> res;
366
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
367 368 369 370 371 372
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
373 374 375 376
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
377 378
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
379 380 381 382
      ++num;
    }
  }
  *num_ops = num;
383
  return *fusion_status;
T
Tao Luo 已提交
384 385
}

T
Tao Luo 已提交
386
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
387 388
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
389
                       std::string params_filename = "params",
N
nhzlx 已提交
390 391
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
392
  // Set fake_image_data
393 394 395 396 397
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
398 399 400 401 402 403 404 405 406 407 408
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
409
  if (feed_names) {
410 411 412 413 414 415 416
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
431
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
432 433 434 435 436 437
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
438 439
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
440
    }
T
Tao Luo 已提交
441 442 443 444
  }
  (*inputs).emplace_back(input_slots);
}

445 446 447 448 449 450 451 452 453 454 455 456
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
457 458 459 460 461 462 463 464 465 466 467
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
468 469
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
470 471
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
472 473 474 475 476
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
477

L
luotao1 已提交
478 479
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
480
                      std::vector<std::vector<PaddleTensor>> *outputs,
481 482
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
483 484 485 486 487
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
488 489 490 491
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
    iterations = std::min(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
  outputs->resize(iterations);
L
luotao1 已提交
492
  Timer warmup_timer;
493
  double elapsed_time = 0;
L
luotao1 已提交
494
  if (!FLAGS_zero_copy) {
495 496 497 498 499
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
500
  } else {
501 502 503 504 505
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
506
  }
507 508 509
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
510
  if (FLAGS_enable_profile) {
L
luotao1 已提交
511 512 513
    paddle::platform::ResetProfiler();
  }
}
514

L
luotao1 已提交
515 516
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
517
                   std::vector<std::vector<PaddleTensor>> *outputs,
518
                   int num_threads, int tid,
519 520
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
521
  int num_times = FLAGS_repeat;
522
  int iterations = inputs.size();  // process the whole dataset ...
523 524
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
525 526 527 528 529
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
530 531
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
532
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
533
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
534
#endif
535
  int predicted_num = 0;
L
luotao1 已提交
536
  if (!FLAGS_zero_copy) {
537
    for (int i = 0; i < iterations; i++) {
538
      run_timer.tic();
L
luotao1 已提交
539
      for (int j = 0; j < num_times; j++) {
540
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
541
      }
542 543 544 545 546 547
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
548
    }
L
luotao1 已提交
549
  } else {
550
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
551 552 553 554 555 556
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
557 558 559 560 561

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
562 563
    }
  }
564

Y
Yiqun Liu 已提交
565
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
566
  ProfilerStop();
Y
Yiqun Liu 已提交
567
#endif
N
nhzlx 已提交
568

569 570
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
571
            iterations, data_type);
572 573 574 575

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
576 577 578
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
579 580
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
581
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
582 583 584
  }
}

L
luotao1 已提交
585 586 587
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
588
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
589 590
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
591
  auto predictor = CreateTestPredictor(config, use_analysis);
592
  if (FLAGS_warmup) {
593
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
594
  }
595 596
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
597 598
}

L
luotao1 已提交
599
void TestMultiThreadPrediction(
600
    const PaddlePredictor::Config *config,
601
    const std::vector<std::vector<PaddleTensor>> &inputs,
602
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
603
    bool use_analysis = true) {
L
luotao1 已提交
604
  std::vector<std::thread> threads;
L
luotao1 已提交
605 606 607 608 609
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
610

L
luotao1 已提交
611 612 613 614
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
615
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
616
      auto &predictor = predictors[tid];
617 618 619 620
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
621
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
622 623 624 625 626 627 628
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

629
void TestPrediction(const PaddlePredictor::Config *config,
630
                    const std::vector<std::vector<PaddleTensor>> &inputs,
631 632
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
633
  PrintConfig(config, use_analysis);
L
luotao1 已提交
634
  if (num_threads == 1) {
T
Tao Luo 已提交
635
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
636
  } else {
T
Tao Luo 已提交
637 638
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
639 640 641
  }
}

642 643 644
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
645 646 647 648 649 650 651 652 653 654 655 656 657 658
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
659
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
660
  LOG(INFO) << "--- Accuracy summary --- ";
661 662
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
663 664
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
665
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
666 667 668
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
669 670
}

671 672 673 674 675 676 677 678
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

679 680
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
681 682 683
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
684 685
}

686 687
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
688
    int compared_idx) {
689 690 691 692
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
693

694 695 696 697 698 699 700
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
701 702 703 704
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
705 706 707
        break;
      case 2:
        PADDLE_ENFORCE_GE(
708 709 710 711 712 713
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
714 715 716 717
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
718 719
    }

720
    if (output_slots[i][compared_idx].lod.size() > 0)
721
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
722 723

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
724
      throw std::invalid_argument(
725
          "CompareAccuracy: output is of a wrong type.");
726 727 728

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
729
  }
730 731 732 733 734 735 736 737

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
738
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
739 740 741 742 743 744 745
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

746
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
747 748 749 750
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
751

752
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
753 754 755

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

756
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
757

758
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
759
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
760 761
}

L
luotao1 已提交
762 763 764 765 766 767 768 769 770
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
771 772 773 774
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
775 776 777 778 779 780
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
781
void CompareNativeAndAnalysis(
782
    const PaddlePredictor::Config *config,
783
    const std::vector<std::vector<PaddleTensor>> &inputs) {
784
  PrintConfig(config, true);
785
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
786
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
787
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
788 789 790 791 792 793 794 795
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
796
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
797 798
}

799
void CompareQuantizedAndAnalysis(
800
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
801 802
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
803 804 805 806 807 808
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
809 810 811 812 813 814 815
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
816
  float sample_latency_fp32{-1};
817 818 819 820 821

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
822 823 824 825 826

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
827
  float sample_latency_int8{-1};
828

829 830 831 832
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
833 834
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
835

836
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
837 838
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

  CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
914 915
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
916 917 918 919 920
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
921 922 923 924 925 926 927 928 929 930
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

931
void CompareAnalysisAndZeroCopy(
932
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
933 934 935 936 937 938 939 940 941
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
942 943
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
944 945 946 947 948 949
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
950
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
951 952 953 954 955
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

956 957 958 959 960 961 962
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
1034
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1035
                                  [](int a, int b) { return a * b; });
1036
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1037 1038 1039 1040 1041 1042 1043
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1044
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
1045 1046 1047 1048 1049 1050 1051 1052
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1053
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
1085 1086
}  // namespace inference
}  // namespace paddle