expand_as_op.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>

#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

#define MAX_RANK_SUPPORTED 6

#define EXPAND_AS_TEMPLATE(z, n, data) \
  case n + 1: {                        \
    ExpandAs<n + 1>(context);          \
    break;                             \
  }
#define REP_EXPAND_AS_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_AS_TEMPLATE, ~)
#define COND(n)                                               \
  BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
                         BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
#define EXPAND_AS_GRAD_CASE(n)                                       \
  case n: {                                                          \
    ExpandAsBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                           \
  }
#define EXPAND_AS_GRAD_TEMPLATE(z, n, data) \
  BOOST_PP_IF(COND(n), EXPAND_AS_GRAD_CASE(n), )
#define REP_EXPAND_AS_GRAD_TEMPLATE(n) \
  BOOST_PP_REPEAT(n, EXPAND_AS_GRAD_TEMPLATE, ~)

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename DeviceContext, typename T>
class ExpandAsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto rank = context.Input<Tensor>("X")->dims().size();
    switch (rank) {
      REP_EXPAND_AS_TEMPLATE(MAX_RANK_SUPPORTED)
      default:
        PADDLE_THROW("Only support tensor with rank being between 1 and 6.");
    }
  }

 protected:
  template <int Rank>
  void ExpandAs(const framework::ExecutionContext& context) const {
    auto* in0 = context.Input<Tensor>("X");
    auto in_dims = in0->dims();
    auto* target_tensor = context.Input<Tensor>("target_tensor");
    auto* out0 = context.Output<Tensor>("Out");
    Eigen::DSizes<int, Rank> bcast_dims;
    int bcast_dims_remainder = 0;
    auto x_dims = in0->dims();
    auto y_dims = target_tensor->dims();
    for (int i = 0; i < y_dims.size(); ++i) {
      PADDLE_ENFORCE_NE(x_dims[i], 0, "X(input) should not have 0 dim");
      bcast_dims[i] = y_dims[i] / x_dims[i];
      bcast_dims_remainder += y_dims[i] % x_dims[i];
    }
    PADDLE_ENFORCE_EQ(bcast_dims_remainder, 0,
                      "X(input) could not be broadcast together with remapped "
                      "shape(expand tensor's shape)");
    framework::DDim out_dims(in_dims);
    for (size_t i = 0; i < bcast_dims.size(); ++i) {
      out_dims[i] *= bcast_dims[i];
    }

    out0->Resize(out_dims);
    auto x = EigenTensor<T, Rank>::From(*in0);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    y.device(place) = x.broadcast(bcast_dims);
  }
};

template <typename DeviceContext, typename T>
class ExpandAsGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto* target_tensor = context.Input<Tensor>("target_tensor");
    auto x_dims = in0->dims();
    auto y_dims = target_tensor->dims();
    std::vector<int> bcast_dims;
    for (int i = 0; i < y_dims.size(); ++i) {
      bcast_dims.push_back(y_dims[i] / x_dims[i]);
    }
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < bcast_dims.size(); ++i) {
      if (bcast_dims[i] == 1) {
        reshape_dims_vec.push_back(x_dims[i]);
      } else {
        if (x_dims[i] == 1) {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(bcast_dims[i]);
        } else {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(bcast_dims[i]);
          reshape_dims_vec.push_back(x_dims[i]);
        }
      }
    }
    int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
               reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
    // no need reduce, just copy
    if (reduce_dims_vec.size() == 0) {
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
      out0->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
    } else {
      switch (dims) {
        REP_EXPAND_AS_GRAD_TEMPLATE(72)
        default:
          PADDLE_THROW("Only support tensor with rank being between 1 and 6.");
      }
    }
  }

 protected:
  template <int Dims>
  void ExpandAsBackward(const framework::ExecutionContext& context,
                        const std::vector<int>& reshape_dims_vec,
                        const std::vector<int>& reduce_dims_vec) const {
    size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
    size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
    PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
                      "Inconsistent size between template Dims and "
                      "reshape dimensions.");
    PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
                      "Inconsistent size between template Dims and "
                      "reduce dimensions.");
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
    Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
    Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
        out_grad.reshape(reshape_dims)
            .sum(reduce_dims)
            .reshape(x_grad.dimensions());
  }
};

}  // namespace operators
}  // namespace paddle