test_multiprocess_dataloader_dataset.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
22 23
from paddle.io import Dataset, IterableDataset, TensorDataset, \
        ComposeDataset, ChainDataset, DataLoader
24 25
from paddle.fluid.dygraph.base import to_variable

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
IMAGE_SIZE = 32


class RandomDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label


class RandomIterableDataset(IterableDataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for i in range(self.sample_num):
            np.random.seed(i)
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, 9, (1, )).astype('int64')
            yield image, label

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

class TestTensorDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        place = fluid.CPUPlace()
        with fluid.dygraph.guard(place):
            input_np = np.random.random([16, 3, 4]).astype('float32')
            input = to_variable(input_np)
            label_np = np.random.random([16, 1]).astype('int32')
            label = to_variable(label_np)

            dataset = TensorDataset([input, label])
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, 3, 4]
                assert label.shape == [1, 1]
                assert isinstance(input, paddle.Tensor)
                assert isinstance(label, paddle.Tensor)
                assert np.allclose(input.numpy(), input_np[i])
                assert np.allclose(label.numpy(), label_np[i])

    def test_main(self):
86 87 88 89
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            self.run_main(num_workers=0, places=p)


class TestComposeDataset(unittest.TestCase):
    def test_main(self):
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1

        dataset1 = RandomDataset(10)
        dataset2 = RandomDataset(10)
        dataset = ComposeDataset([dataset1, dataset2])
        assert len(dataset) == 10

        for i in range(len(dataset)):
            input1, label1, input2, label2 = dataset[i]
            input1_t, label1_t = dataset1[i]
            input2_t, label2_t = dataset2[i]
            assert np.allclose(input1, input1_t)
            assert np.allclose(label1, label1_t)
            assert np.allclose(input2, input2_t)
            assert np.allclose(label2, label2_t)


class TestChainDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1

        dataset1 = RandomIterableDataset(10)
        dataset2 = RandomIterableDataset(10)
        dataset = ChainDataset([dataset1, dataset2])

        samples = []
        for data in iter(dataset):
            samples.append(data)
        assert len(samples) == 20

        idx = 0
        for image, label in iter(dataset1):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1
        for image, label in iter(dataset2):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1

    def test_main(self):
138 139 140 141
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
142
            self.run_main(num_workers=0, places=p)
143 144


145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
class NumpyMixTensorDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return paddle.to_tensor(image, place=paddle.CPUPlace()), label


class TestNumpyMixTensorDataset(TestTensorDataset):
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = NumpyMixTensorDataset(16)
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, IMAGE_SIZE]
                assert label.shape == [1, 1]
                assert isinstance(input, paddle.Tensor)
                assert isinstance(label, paddle.Tensor)


183 184
if __name__ == '__main__':
    unittest.main()