control_flow.py 171.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
H
hong 已提交
21
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
32
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
33

Q
QI JUN 已提交
34
__all__ = [
W
Wu Yi 已提交
35
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
36
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
37
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
38 39
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
40 41
]

Y
Yu Yang 已提交
42

43 44
def select_output(input, outputs, mask):
    """
45
    **select_output**
46 47 48 49 50 51 52 53 54 55 56 57 58 59
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
60 61 62 63
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

64 65 66 67 68 69
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
70 71 72
    return outputs


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
        map(lambda a, b: a if a == b else -1, first_shape, second_shape))
    return out_shape


92 93 94
def select_input(inputs, mask):
    """
    **select_input**
95

96 97 98 99 100 101 102 103 104 105 106 107
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
108 109 110
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

111 112 113 114 115
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
    #assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
116

117 118 119
    out = helper.create_variable(dtype=output_dtype,
                                 shape=output_shape,
                                 type=output_type)
120 121 122 123 124 125
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
126 127 128
    return out


129
def select_input_with_buildin_type(inputs, mask, name):
130
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
131
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
132 133
    false_var, true_var = inputs

134 135 136 137 138 139
    if isinstance(false_var, UndefinedVar) and isinstance(
            true_var, UndefinedVar):
        """ None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.
        """
        return None

140
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
141 142 143 144 145
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
                f"Exceptions throwed while doing select_input on {name}:\n{e}")
146

147 148
    elif (isinstance(false_var, (support_ret_buildin_type))
          and isinstance(false_var, type(true_var))):
149 150 151 152
        if false_var == true_var:
            return false_var
        else:
            inputs = [
153 154
                to_static_variable(false_var),
                to_static_variable(true_var)
155 156
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
157 158 159 160
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
161 162 163 164 165
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
166 167 168 169 170 171 172 173 174 175
    elif ((isinstance(false_var, UndefinedVar)
           and isinstance(true_var, (Variable, ) + support_ret_buildin_type))
          or (isinstance(true_var, UndefinedVar)
              and isinstance(false_var,
                             (Variable, ) + support_ret_buildin_type))):

        def create_var_if_not_undefined_var(a):
            if isinstance(a, UndefinedVar): return a
            return to_static_variable(a)

176 177 178
        true_var, false_var = to_static_variable(true_var), to_static_variable(
            false_var)
        inputs = [false_var, true_var]
179 180 181 182 183
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))
184 185 186 187 188
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
            f"Exceptions throwed while doing select_input on {name}:\n{e}")
189 190


191
def split_lod_tensor(input, mask, level=0):
192 193 194 195
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
196 197
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
198 199

    Args:
200
        input(Variable|tuple|list|None): The input tensor that contains complete
201
                                lod information needed to construct the output.
202
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
203
        level(int): The specific lod level to split.
204 205

    Returns:
Q
qiaolongfei 已提交
206 207 208 209
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
210 211 212 213

    Examples:
        .. code-block:: python

214
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
215
          x = fluid.layers.data(name='x', shape=[1])
216 217
          x.persistable = True

Q
qiaolongfei 已提交
218
          y = fluid.layers.data(name='y', shape=[1])
219 220
          y.persistable = True

Q
qiaolongfei 已提交
221
          out_true, out_false = fluid.layers.split_lod_tensor(
222
                input=x, mask=y, level=level)
223

224
    """
225 226 227 228
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
229
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
230 231
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
232 233 234 235 236 237 238 239 240 241
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
242 243 244
    return out_true, out_false


245
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
246 247 248 249 250
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
251 252 253
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
254 255

    Args:
256 257 258
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
259
                            lod information needed to construct the output.
260
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
261
        level(int): The specific lod level to merge.
262 263 264 265 266 267 268

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

269
          import paddle.fluid as fluid
270 271 272 273 274 275 276 277 278 279 280 281
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
282
    helper = LayerHelper('merge_lod_tensor', **locals())
283 284 285 286 287 288 289
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
290
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
291 292 293 294 295 296 297 298 299
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
300 301 302
    return out


303
@static_only
Y
Yan Chunwei 已提交
304 305 306
def Print(input,
          first_n=-1,
          message=None,
307
          summarize=20,
Y
Yan Chunwei 已提交
308 309 310
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
311
          print_tensor_layout=True,
Y
yangyaming 已提交
312 313
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
314
    '''
315 316
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
317 318 319 320 321 322 323 324 325
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
326
        input (Variable): A Tensor to print.
327
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
328
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
329 330
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
331 332 333
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
334
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
335
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
336
        print_phase (str): Which phase to displace, including 'forward',
337
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
338 339
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
340 341

    Returns:
342
        Variable: Output tensor.
Y
Yan Chunwei 已提交
343

344 345 346 347
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
348

Y
Yan Chunwei 已提交
349 350
    Examples:
        .. code-block:: python
351

352 353 354
           import paddle

           paddle.enable_static()
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
370
    '''
371 372 373
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
374

375 376
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
377 378 379 380 381 382 383 384 385 386 387 388 389 390
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
391
    return output
Y
Yan Chunwei 已提交
392 393


H
Huihuang Zheng 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

457 458 459 460 461 462
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
463 464 465 466

    return op


Y
Yu Yang 已提交
467 468
class BlockGuard(object):
    """
469 470 471 472
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
473 474
    """

475 476
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
477
            raise TypeError("BlockGuard takes a program")
478
        self.main_program = main_program
Y
Yu Yang 已提交
479 480

    def __enter__(self):
W
Wu Yi 已提交
481
        self.main_program._create_block()
Y
Yu Yang 已提交
482 483

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
484
        self.main_program._rollback()
Y
Yu Yang 已提交
485 486 487 488 489
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
490 491 492 493 494
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
495 496
    """

Y
Yu Yang 已提交
497
    def __init__(self, rnn):
X
Xin Pan 已提交
498
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
499
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
500
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
501 502 503 504
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
505
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
506 507

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
508 509
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
510
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
511
        self.rnn._complete_op()
512 513
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
514 515 516 517


class StaticRNNMemoryLink(object):
    """
518 519 520 521
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
522 523 524 525 526 527 528 529 530


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
531 532 533 534 535 536 537 538 539
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
540
    """
541 542
    :api_attr: Static Graph

543 544
    StaticRNN class.

545 546 547 548 549 550 551
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
552 553

    Examples:
554 555 556 557 558 559
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
560 561
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
562 563 564 565 566
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
567
            # transform batch size to dim 1
568 569 570 571
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
572
                # mark created x_emb as input, each step process a word
573
                word = rnn.step_input(x_emb)
574
                # create prev memory parameter, batch size comes from word
575 576
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
577 578
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
579
                # mark hidden as output
580
                rnn.step_output(hidden)
581
            # get StaticrNN final output
582
            result = rnn()
C
chengduo 已提交
583

584
    """
Y
Yu Yang 已提交
585 586 587 588
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

589
    def __init__(self, name=None):
590
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
591
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
592 593 594 595 596 597 598 599
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
600
        """
601 602
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
603
        """
Y
Yang Yang 已提交
604
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
605 606 607 608 609

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

610 611 612 613 614 615 616
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
617
        """
C
chengduo 已提交
618 619 620
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
621 622
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
623

624
        Args:
625
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
626 627
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
628 629 630 631 632 633 634
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
635 636

        Returns:
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
668 669
            .. code-block:: python

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

693
        """
Y
Yu Yang 已提交
694
        self._assert_in_rnn_block_('memory')
695 696 697 698 699 700
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
701
        if init is None:
702
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
703
                raise ValueError(
704
                    "if init is None, memory at least need shape and batch_ref")
705
            parent_block = self._parent_block()
706
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
707
                [self.helper.name, "memory_boot"]))
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
723 724 725 726

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
727 728
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
729
                dtype=init.dtype,
Y
Yu Yang 已提交
730
                shape=init.shape)
731 732
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
733 734 735
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
736 737 738 739 740 741 742 743
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
773
        """
Y
Yu Yang 已提交
774
        self._assert_in_rnn_block_('step_input')
775
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
776
        if self.seq_len is None:
Y
Yu Yang 已提交
777
            self.seq_len = x.shape[0]
778
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
779 780
            raise ValueError("Static RNN only take fix seq_len input")

781 782 783 784
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
785 786 787 788
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
789 790 791 792 793 794 795 796
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
828
        """
Y
Yu Yang 已提交
829
        self._assert_in_rnn_block_('step_output')
830
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
831

X
Xin Pan 已提交
832
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
833 834 835 836
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
837

838 839 840 841
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
842 843 844 845

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
846 847 848 849
        """
        Mark the StaticRNN output variables.

        Args:
850
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
851 852 853

        Returns:
            None
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
885
        """
Y
Yu Yang 已提交
886 887 888 889
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
890
        """
891
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
892 893 894

        Args:
            mem(Variable): the memory variable.
895
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
896
                           var and mem should have same dims and data type.
C
chengduo 已提交
897 898 899

        Returns:
            None
900

C
chengduo 已提交
901
        """
902 903
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
904 905
        self.memories[mem.name].mem = var

906
    def _parent_block(self):
907
        prog = self.helper.main_program
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

923
    def _complete_op(self):
924 925
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
926
        parent_block = self._parent_block()
Y
Yu Yang 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
941 942 943
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
944 945 946 947 948 949 950 951
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

952 953 954
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
955 956 957 958 959 960 961

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
962
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
963 964 965
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
966
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
967 968
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
969 970
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
971 972
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
973 974
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
975 976 977 978
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
979 980 981

            memories.append(new_mem.name)

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
998 999


Y
Yang Yang(Tony) 已提交
1000
class WhileGuard(BlockGuard):
1001

Y
Yang Yang(Tony) 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1016
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1017 1018 1019
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1043 1044 1045 1046 1047 1048 1049 1050
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1051 1052
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1077
class While(object):
X
Xin Pan 已提交
1078
    """
1079
    :api_attr: Static Graph
1080

1081
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1082

1083 1084 1085 1086
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1087 1088 1089 1090 1091 1092
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1093
    Args:
1094
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1095
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1096
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1097

1098
    Examples 1:
X
Xin Pan 已提交
1099
          .. code-block:: python
1100

1101
            import paddle.fluid as fluid
1102 1103 1104 1105 1106
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1107

1108
            cond = fluid.layers.less_than(x=i, y=loop_len)
1109
            while_op = fluid.layers.While(cond=cond)
1110
            with while_op.block():
1111
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1112
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1113 1114 1115 1116 1117

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1147 1148
    """

Y
Yang Yang(Tony) 已提交
1149 1150 1151 1152
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1153
    def __init__(self, cond, is_test=False, name=None):
1154
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1155
        self.status = While.BEFORE_WHILE_BLOCK
1156
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1157
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1158
            raise TypeError(
1159
                "condition expected shape as [1], but given shape as {0}.".
1160
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1161
        self.cond_var = cond
C
chengduo 已提交
1162
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1163 1164 1165 1166

    def block(self):
        return WhileGuard(self)

1167
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1168 1169
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1170 1171
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1172 1173 1174

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1175 1176
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1177 1178 1179

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1180 1181 1182
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1183

1184
        x_name_list |= set(map(lambda x: x.name, out_vars))
1185 1186 1187
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1188

Y
Yang Yang(Tony) 已提交
1189 1190 1191 1192 1193 1194
        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1195 1196
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1197 1198
                'Condition': [self.cond_var]
            },
1199 1200 1201 1202 1203 1204 1205 1206
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1207 1208


1209 1210 1211
support_ret_buildin_type = (bool, float, six.integer_types)


1212
def assign_skip_lod_tensor_array(input, output):
1213
    """
1214
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1215
    """
1216 1217 1218 1219 1220 1221 1222

    def has_shape_diff(x_var, y_var):
        if len(x_var.shape) != len(y_var.shape): return True
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
            if x_dim != y_dim and -1 not in [x_dim, y_dim]: return True
        return False

1223
    if not isinstance(input, (Variable, core.VarBase)):
1224 1225
        if isinstance(output, Variable) and isinstance(
                input, support_ret_buildin_type):
1226 1227 1228
            assign(input, output)
        else:
            output = input
1229 1230
        return

1231 1232
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1233 1234
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1235 1236 1237
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1238 1239 1240 1241 1242
        if isinstance(output, Variable) and isinstance(
                input, Variable) and has_shape_diff(input, output):
            warnings.warn(
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right."
                .format(input.shape, output.shape))
1243
        assign(input, output)
1244 1245


G
guofei 已提交
1246
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1247
    """
1248 1249
    :api_attr: Static Graph

G
guofei 已提交
1250 1251
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1252 1253 1254 1255
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1256
    Args:
1257 1258 1259 1260 1261
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1262
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1263 1264
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1265

G
guofei 已提交
1266
    Returns:
C
Chen Long 已提交
1267
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1268 1269 1270 1271

    Examples:
        .. code-block:: python

1272 1273 1274
            import paddle
            paddle.enable_static()

1275 1276
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1277

1278 1279 1280
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1281

C
Chen Long 已提交
1282 1283 1284 1285 1286 1287
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1288

C
Chen Long 已提交
1289
                exe = paddle.static.Executor(paddle.CPUPlace())
1290
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1291 1292 1293 1294 1295 1296 1297 1298
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1299
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1300 1301 1302 1303
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1304 1305
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1306 1307
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1308
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1309 1310
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1311
    if _non_static_mode():
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1322
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1323 1324
        return loop_vars

G
guofei 已提交
1325
    while_loop_block = While(pre_cond, is_test, name)
1326
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1327
    with while_loop_block.block():
1328 1329 1330 1331 1332 1333 1334 1335 1336
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1337 1338
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1339
        try:
1340
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1341 1342
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1343 1344 1345
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1346
        now_cond = cond(*output_vars)
1347
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1348 1349 1350 1351
        assign(now_cond, pre_cond)
    return loop_vars


1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
def _deal_with_undefined_var(output_vars, loop_vars):
    """ Deal with undefined var cases, We create undefined variable based on the results of body().
        In Dy2Static, we use undefined var to represent the var created in control flow. This function
        expand the loop_vars and replace original loop_vars.
        1. UndefinedVar = Variable      # create a variable
        2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
        3. UndefinedVar = List(int)     # create a list of variable
        4. UndefinedVar = value         # create a variable
    """
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_variable

    def create_var_like(o_var):
        if isinstance(o_var,
                      (Variable, ) + support_ret_buildin_type) or o_var is None:
            return create_undefined_variable()
1367
        if is_sequence(o_var):
1368
            """
1369 1370 1371
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1385
def lod_rank_table(x, level=0):
1386 1387
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1388 1389
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1390
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1391
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1392 1393
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1394 1395 1396 1397

        .. code-block:: text

            x is a LoDTensor:
1398 1399
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1400 1401
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1402 1403 1404
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1405

Y
yangyaming 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1415 1416 1417 1418

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1419 1420
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1421 1422 1423 1424 1425 1426 1427

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1428
            import paddle.fluid as fluid
Y
yangyaming 已提交
1429
            x = fluid.layers.data(name='x', shape=[10],
1430
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1431
            out = layers.lod_rank_table(x=x, level=0)
1432
    """
1433 1434 1435 1436 1437 1438
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1439
    helper = LayerHelper("lod_rank_table", **locals())
1440 1441 1442 1443 1444 1445
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1446
    return table
Y
Yu Yang 已提交
1447 1448


Y
yuyang18 已提交
1449
@templatedoc()
1450
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1451 1452 1453 1454 1455 1456 1457 1458
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1459 1460

    Args:
Y
yuyang18 已提交
1461
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1462 1463

    Returns:
Y
yuyang18 已提交
1464
        ${out_comment}.
F
fengjiayi 已提交
1465 1466
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1467
    res = helper.create_variable_for_type_inference(dtype="int64")
1468 1469 1470
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1471 1472 1473
    return res


1474
def lod_tensor_to_array(x, table):
1475
    """
F
fengjiayi 已提交
1476 1477
    Convert a LoDTensor to a LoDTensorArray.

1478 1479 1480 1481 1482
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1483
    Users should not use it directly.
1484 1485

    Args:
F
fengjiayi 已提交
1486
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1487 1488
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1489
                                descending order. It is generally generated
F
fengjiayi 已提交
1490
                                by `layers.lod_rank_table()` API.
1491 1492

    Returns:
F
fengjiayi 已提交
1493
        Variable: The LoDTensorArray that has been converted from the input tensor.
1494 1495 1496 1497

    Examples:
        .. code-block:: python

1498
          import paddle.fluid as fluid
1499 1500 1501
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1502
    """
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1513 1514
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1515
        name=unique_name.generate("lod_tensor_to_array"),
1516
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1517
        dtype=x.dtype)
1518 1519 1520 1521 1522 1523
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1524 1525 1526
    return array


1527
def array_to_lod_tensor(x, table):
1528
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1529 1530

    Args:
1531
        x (Variable|list): The lod tensor array to be converted to a tensor.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1543
          import paddle.fluid as fluid
1544 1545 1546 1547
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1548
    """
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1560
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1561
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1562 1563 1564 1565 1566 1567
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1568 1569 1570
    return tmp


1571
def increment(x, value=1.0, in_place=True):
1572
    """
1573 1574
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1575

1576
    Parameters:
T
tianshuo78520a 已提交
1577
        x (Variable): A tensor that must always contain only one element, its data type supports
1578 1579 1580
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1581 1582

    Returns:
1583
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1584 1585 1586 1587

    Examples:
        .. code-block:: python

1588
          import paddle.fluid as fluid
1589 1590
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1591
    """
H
hong 已提交
1592
    if in_dygraph_mode():
1593
        return _C_ops.increment_(x, value)
H
hong 已提交
1594

1595 1596
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1597
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1598
    if not in_place:
X
Xin Pan 已提交
1599
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1600 1601
    else:
        out = x
1602 1603 1604 1605
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1606
    return out
Y
Yu Yang 已提交
1607 1608


1609
def array_write(x, i, array=None):
1610
    """
1611 1612 1613 1614
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1615 1616

    Args:
1617 1618 1619 1620
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1621 1622
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1623
            as a result.
1624

1625
    Returns:
1626
        Variable: The input ``array`` after ``x`` is written into.
1627 1628

    Examples:
D
dzhwinter 已提交
1629
        .. code-block:: python
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1654 1655
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1656 1657
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1658
    """
J
Jiabin Yang 已提交
1659
    if _non_static_mode():
1660 1661 1662 1663 1664 1665 1666 1667 1668
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1669
        i = i.numpy().item(0)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1684 1685
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1686
    helper = LayerHelper('array_write', **locals())
1687 1688
    if array is not None:
        if not isinstance(
1689 1690
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1691 1692
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1693 1694 1695 1696
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1697
            dtype=x.dtype)
1698 1699 1700 1701 1702 1703
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1704 1705 1706
    return array


1707
def create_array(dtype, initialized_list=None):
1708
    """
1709
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1710
    the input of :ref:`api_fluid_layers_array_read` and
1711 1712
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1713 1714

    Args:
1715 1716
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1717 1718
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1719 1720

    Returns:
1721
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1722 1723 1724 1725

    Examples:
        .. code-block:: python

1726
          import paddle.fluid as fluid
1727
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1728 1729

    """
1730 1731 1732 1733
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1734 1735
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1736 1737 1738 1739 1740 1741
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1742 1743
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1744

J
Jiabin Yang 已提交
1745
    if _non_static_mode():
1746
        return array
1747

Y
Yang Yang(Tony) 已提交
1748
    helper = LayerHelper("array", **locals())
1749
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1750 1751 1752 1753
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1754 1755 1756 1757 1758
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1759

Y
yuyang18 已提交
1760
@templatedoc()
W
wawltor 已提交
1761
def less_than(x, y, force_cpu=None, cond=None, name=None):
1762
    """
1763

Y
yuyang18 已提交
1764
    ${comment}
1765 1766

    Args:
N
Noel 已提交
1767 1768
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1769
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1770
        cond(Tensor, optional): Optional output which can be any created Tensor
1771
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1772
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1773 1774
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1775
    Returns:
Y
yuyang18 已提交
1776
        ${out_comment}.
1777 1778 1779 1780

    Examples:
        .. code-block:: python

N
Noel 已提交
1781 1782 1783 1784 1785 1786 1787
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1788
    """
1789 1790 1791 1792 1793 1794 1795 1796 1797
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1798 1799
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1800
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1801 1802
        cond.stop_gradient = True

Y
yuyang18 已提交
1803 1804 1805 1806
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1807 1808 1809 1810 1811 1812 1813
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1814 1815 1816
    return cond


Z
zhoukunsheng 已提交
1817
@templatedoc()
W
wawltor 已提交
1818
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1819
    """
1820 1821 1822 1823
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1824
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1825 1826

    Args:
1827
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1828
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1829 1830
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1831 1832
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1833 1834

    Returns:
1835
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1836 1837 1838 1839

    Examples:
        .. code-block:: python

1840
          import paddle.fluid as fluid
1841 1842 1843 1844 1845 1846
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1847
    """
1848 1849 1850 1851 1852
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1853
        check_type(cond, "cond", Variable, "less_equal")
1854

Z
zhoukunsheng 已提交
1855 1856 1857 1858 1859 1860 1861
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1862 1863 1864 1865 1866 1867 1868
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1869 1870 1871 1872
    return cond


@templatedoc()
W
wawltor 已提交
1873
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1874
    """
1875 1876 1877 1878
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1879
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1880 1881

    Args:
1882
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1883
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1884 1885
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1886 1887
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1888 1889

    Returns:
1890
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1891 1892 1893 1894

    Examples:
        .. code-block:: python

1895
          import paddle.fluid as fluid
1896 1897 1898 1899 1900
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1901
    """
1902 1903 1904 1905 1906
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1907
        check_type(cond, "cond", Variable, "greater_than")
1908

Z
zhoukunsheng 已提交
1909 1910 1911 1912 1913 1914 1915
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1916
    if in_dygraph_mode():
1917
        return _C_ops.greater_than(x, y, -1)
1918
    else:
1919 1920 1921 1922 1923 1924 1925
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1926
        return cond
Z
zhoukunsheng 已提交
1927 1928 1929


@templatedoc()
W
wawltor 已提交
1930
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1931
    """
1932 1933 1934 1935
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1936
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1937 1938

    Args:
1939
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1940
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1941 1942
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1943 1944
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1945 1946

    Returns:
1947
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1948 1949 1950 1951

    Examples:
        .. code-block:: python

1952
          import paddle.fluid as fluid
1953 1954 1955 1956 1957 1958
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1959

Z
zhoukunsheng 已提交
1960
    """
1961 1962 1963 1964 1965
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1966
        check_type(cond, "cond", Variable, "greater_equal")
1967

Z
zhoukunsheng 已提交
1968 1969 1970 1971 1972 1973 1974
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1975 1976 1977 1978 1979 1980 1981
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1982 1983 1984
    return cond


W
wawltor 已提交
1985
def equal(x, y, cond=None, name=None):
1986 1987 1988 1989
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1990 1991
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
1992
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
1993 1994
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1995 1996
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1997 1998

    Returns:
W
wangchaochaohu 已提交
1999 2000
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2001 2002 2003 2004

    Examples:
        .. code-block:: python

2005
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2006 2007 2008 2009 2010 2011 2012
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2013
    """
H
hong 已提交
2014 2015
    if in_dygraph_mode():
        default_axis = -1
2016
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2017

2018 2019 2020 2021 2022
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
2023
        check_type(cond, "cond", Variable, "equal")
2024

2025 2026
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2027
        cond = helper.create_variable_for_type_inference(dtype='bool')
2028 2029
        cond.stop_gradient = True

2030 2031 2032 2033 2034 2035
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
2036 2037 2038
    return cond


W
wawltor 已提交
2039
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2040
    """
2041 2042 2043 2044
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

2045
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2046 2047

    Args:
2048
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2049
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2050 2051
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2052 2053
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2054 2055

    Returns:
2056
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2057 2058 2059 2060

    Examples:
        .. code-block:: python

2061
          import paddle.fluid as fluid
2062

2063 2064
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2065 2066
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2067 2068 2069 2070 2071
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
2072
        check_type(cond, "cond", Variable, "not_equal")
2073

Z
zhoukunsheng 已提交
2074 2075 2076 2077 2078
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2079 2080 2081 2082 2083 2084
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
2085 2086 2087
    return cond


2088
def array_read(array, i):
2089
    """
2090
    This OP is used to read data at the specified position from the input array
2091
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2092
    is the specified read position. This OP is often used together with
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2105

K
kavyasrinet 已提交
2106
    Args:
2107 2108 2109
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2110

K
kavyasrinet 已提交
2111
    Returns:
2112
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2113

K
kavyasrinet 已提交
2114
    Examples:
2115 2116
        .. code-block:: python

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2145 2146
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2147
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2148
    """
J
Jiabin Yang 已提交
2149
    if _non_static_mode():
2150 2151 2152 2153 2154 2155 2156 2157 2158
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2159
        i = i.numpy().item(0)
2160 2161
        return array[i]

2162
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2163 2164 2165 2166 2167
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2168
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2169 2170 2171 2172 2173 2174
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2175
    return out
Y
Yang Yu 已提交
2176 2177


2178
def shrink_memory(x, i, table):
2179
    """
Y
yuyang18 已提交
2180
    This function creates an operator to shrink rnn memory using the RankTable
2181
    as mentioned in the input parameter.
Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2202
    """
Y
Yang Yu 已提交
2203
    helper = LayerHelper('shrink_memory', **locals())
2204 2205 2206
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2207
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2208 2209 2210 2211 2212 2213 2214 2215
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2216
    return out
Y
Yang Yu 已提交
2217 2218


2219
def array_length(array):
2220
    """
2221
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2222
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2223
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2224

K
kavyasrinet 已提交
2225
    Args:
2226
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2227 2228

    Returns:
2229
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2230 2231

    Examples:
Q
qiaolongfei 已提交
2232
        .. code-block:: python
K
kavyasrinet 已提交
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2250

2251 2252 2253 2254 2255
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2256

2257 2258 2259
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2260 2261
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2262
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2263
    """
2264

J
Jiabin Yang 已提交
2265
    if _non_static_mode():
2266 2267 2268 2269 2270
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2271 2272 2273 2274 2275 2276
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2277
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2278
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2279
    tmp.stop_gradient = True
2280 2281 2282
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2283
    return tmp
Y
Yu Yang 已提交
2284 2285 2286


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2287
    """
2288 2289 2290
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2291 2292 2293
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2294
    def __init__(self, block):
2295
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2296 2297 2298 2299 2300 2301 2302 2303
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2304 2305
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2306 2307 2308


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2309 2310 2311 2312 2313 2314 2315 2316
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2317
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2318 2319 2320 2321 2322
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2323
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2335
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2336
        for each_input in inputs:
2337
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2338
        self.inputs = inputs
2339
        self.is_scalar_condition = is_scalar_condition
2340
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2351 2352 2353 2354
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2355

2356 2357 2358
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2359
        param_list = [
W
Wu Yi 已提交
2360
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2361 2362
        ]

X
Xin Pan 已提交
2363 2364 2365 2366 2367
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2368 2369

        step_scope = parent_block.create_var(
2370
            type=core.VarDesc.VarType.STEP_SCOPES)
2371
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2372 2373
            type='conditional_block',
            inputs={
2374 2375
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2376
            },
2377 2378 2379 2380
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2381 2382 2383 2384 2385
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2386 2387 2388 2389 2390 2391
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2392
        inside_block_idx = inside_block.idx
2393

2394 2395 2396
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2438 2439
            conditional_block_op.desc, cpt.to_text(set()),
            [grad_sub_block.desc])
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2454 2455
            if grad_sub_block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2472

2473
def copy_var_to_parent_block(var, layer_helper):
2474 2475
    if not isinstance(var, Variable):
        return var
2476 2477 2478 2479 2480
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2481 2482 2483 2484
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2485 2486 2487
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2488
        assign(var, parent_block_var)
2489 2490 2491
    return parent_block_var


2492
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2493
    """
2494 2495 2496 2497 2498 2499 2500 2501 2502
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2503 2504

    Note:
2505 2506 2507 2508
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2509 2510 2511
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2512
        3. If it is in static mode, any tensors or operations created outside
2513 2514 2515
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2516 2517

        .. code-block:: python
2518 2519 2520 2521 2522

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2523
            c = a * b
2524
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2525

2526 2527 2528
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2529 2530

    Args:
2531
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2532
            value determines whether to return the result of ``true_fn`` or
2533 2534 2535 2536 2537 2538
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2539
             don't have to set this parameter. For more information, please
2540
             refer to :ref:`api_guide_Name` .
2541 2542 2543
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2544
             be same with return values of true_fn and false_fn.
2545 2546

    Returns:
2547
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2548
        predicate ``pred`` is true else ``false_fn()`` .
2549 2550 2551

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2552 2553
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2554 2555 2556 2557

    Examples:
        .. code-block:: python

2558
            import paddle
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2569 2570 2571 2572
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2573

2574 2575

            def false_func():
2576 2577 2578 2579 2580
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2581

2582 2583
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2584
            pred = paddle.less_than(x=x, y=y, name=None)
2585
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2586
            # ret is a tuple containing 2 tensors
2587 2588
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2589
            #           [ True  True  True]]
2590

2591
    """
J
Jiabin Yang 已提交
2592
    if _non_static_mode():
2593
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2594
        assert pred.size == 1, "condition input's numel should be 1"
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2607 2608
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2609 2610 2611
                return false_fn()
        return None

2612 2613
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2614 2615 2616
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2617
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2618 2619
    if true_fn is not None:
        if not callable(true_fn):
2620 2621 2622
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2623 2624 2625 2626
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2627
                true_output = map_structure(copy_to_parent_func,
2628 2629 2630
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2631 2632 2633
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2634 2635
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2636 2637 2638
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2639
                false_output = map_structure(copy_to_parent_func,
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
2655
    if return_names is None:
2656
        is_dy2staic = False
2657 2658
        return_names = ["no name"] * len(to_sequence(true_output))
    else:
2659
        """
2660 2661
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2662 2663 2664 2665 2666 2667 2668
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2669 2670
        true_output, false_output = expand_undefined_var(
            true_output, false_output, return_names)
2671

2672
    if len(to_sequence(true_output)) != len(to_sequence(false_output)):
2673
        raise ValueError(
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
            "true fn returns {} vars, but false fn returns {} vars, which is not equals"
            .format(len(to_sequence(true_output)),
                    len(to_sequence(false_output))))
    for true_out, false_out, return_name in zip(to_sequence(true_output),
                                                to_sequence(false_output),
                                                to_sequence(return_names)):
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}"
                .format(return_name, e))
2686

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    def check_ret_none(seq_true, seq_false, seq_names):
        length = len(seq_true)
        for i in range(length):
            f_true = flatten(seq_true[i])
            f_false = flatten(seq_false[i])
            for idx in range(len(f_true)):
                if f_true[idx] is None and f_false[idx] is not None or f_false[
                        idx] is None and f_true[idx] is not None:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            seq_names[i], type(f_true[idx]), f_true[idx],
                            type(f_false[idx]), f_false[idx]))

    check_ret_none(to_sequence(true_output), to_sequence(false_output),
                   to_sequence(return_names))

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output)

2709
    mask = cast(pred, dtype='int32')
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    merge_func = lambda name, false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask, name)

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
        map(merge_every_var_list, to_sequence(false_output),
            to_sequence(true_output), to_sequence(return_names)))
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2720 2721 2722
    return merged_output


2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
        if x is None: return UndefinedVar("padding")
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


def expand_undefined_var(nest1, nest2, names):
2736 2737 2738 2739 2740
    """ TODO: make this function recursively.
        nest1: Var1, (UndefinedVar, [1,2,3])
        nest2: Var2, ([1,2,3,4], UndefinedVar)
        In this case, we should not expand recursively.
    """
2741 2742 2743 2744 2745 2746 2747
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_VALUE_PREFIX

    def pack_undefined_var_as(seq):
        return pack_sequence_as(seq,
                                [UndefinedVar("padding") for i in flatten(seq)])

2748
    def map_fn(n1, n2, name, order):
2749 2750
        if not name.startswith(RETURN_VALUE_PREFIX) and (isinstance(
                n1, UndefinedVar) or n1 is None):
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n1), n1, type(n2), n2))
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n2), n2, type(n1), n1))
2764 2765 2766 2767
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2768 2769
        map(map_fn, to_sequence(nest1), to_sequence(nest2), to_sequence(names),
            [0 for i in to_sequence(names)]))
2770
    nest2_out = list(
2771 2772
        map(map_fn, to_sequence(nest2), to_sequence(nest1), to_sequence(names),
            [1 for i in to_sequence(names)]))
2773 2774 2775 2776 2777
    if not is_sequence(nest1): nest1_out = nest1_out[0]
    if not is_sequence(nest2): nest2_out = nest2_out[0]
    return nest1_out, nest2_out


L
liym27 已提交
2778
def _error_message(what, arg_name, op_name, right_value, error_value):
2779
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2792 2793
    :api_attr: Static Graph

L
liym27 已提交
2794 2795 2796 2797 2798 2799 2800 2801
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2802
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2803 2804 2805 2806 2807 2808 2809
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2810
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2811 2812 2813 2814 2815 2816
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2817 2818 2819
            import paddle

            paddle.enable_static()
L
liym27 已提交
2820 2821

            def fn_1():
2822
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2823 2824

            def fn_2():
2825
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2826 2827

            def fn_3():
2828
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2829

2830 2831 2832 2833
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2834 2835 2836
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2837

2838 2839 2840
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2841 2842

                # Call fn_1 because pred_1 is True
2843
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2844 2845 2846 2847
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2848
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2849

2850
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2861
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2862 2863 2864 2865 2866

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2867
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2868 2869 2870
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2871 2872
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2905
class Switch(object):
Q
qiaolongfei 已提交
2906
    """
2907
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2908

2909 2910 2911 2912 2913
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2914 2915
    only the statement following the default branch is executed.

2916 2917 2918 2919
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2920
    Member Functions:
2921
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2922

2923 2924 2925 2926 2927
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2938

2939 2940
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2941 2942 2943

    Examples:
        .. code-block:: python
2944

2945
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2946

2947
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2948 2949 2950 2951 2952
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2953
            zero_var = fluid.layers.fill_constant(
2954
                shape=[1], dtype='float32', value=0.0)
2955
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2956
                shape=[1], dtype='float32', value=1.0)
2957
            two_var = fluid.layers.fill_constant(
2958
                shape=[1], dtype='float32', value=2.0)
2959

2960
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2961 2962

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2963
                with switch.case(global_step == zero_var):
2964
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2965
                with switch.default():
2966
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2967

2968 2969 2970 2971 2972
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2973 2974
    """

2975 2976 2977 2978 2979 2980 2981 2982 2983
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2984 2985 2986 2987
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2988 2989 2990 2991 2992 2993 2994
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2995 2996
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2997 2998
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2999
                [logical_and(x=pre_not_cond, y=condition)],
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3027 3028 3029


class IfElseBlockGuard(object):
3030

Y
Yu Yang 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3064
    """
3065 3066
    :api_attr: Static Graph

3067 3068 3069 3070
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3071 3072 3073 3074
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3075 3076 3077
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3107
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3108 3109 3110 3111 3112 3113 3114 3115

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3116
        print(res)
3117
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3118 3119

    Args:
3120 3121
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3122

3123 3124
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3125

3126 3127
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3128

3129 3130 3131 3132 3133 3134 3135
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3136

X
Xin Pan 已提交
3137
    """
Y
Yu Yang 已提交
3138 3139 3140 3141
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3142
    def __init__(self, cond, name=None):
3143 3144
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3145
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3157
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3158
            out_true = parent_block.create_var(
3159 3160
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3161
                dtype=x.dtype)
Y
Yu Yang 已提交
3162 3163

            out_false = parent_block.create_var(
3164 3165
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3166
                dtype=x.dtype)
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3186
    def _parent_block(self):
Y
Yu Yang 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
3202
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3203
        for each_out in outs:
3204 3205
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
3206 3207
            # create outside tensor
            outside_out = parent_block.create_var(
3208
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
3209
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
3210
                dtype=each_out.dtype)
Y
Yu Yang 已提交
3211 3212 3213
            out_table.append(outside_out)

            # assign local var to outside
3214
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3215 3216 3217 3218

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3219
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3233 3234 3235 3236 3237
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3238
        return rlist
3239 3240 3241


class DynamicRNN(object):
Y
yuyang18 已提交
3242
    """
3243 3244
    :api_attr: Static Graph

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3257
    The input sequences will be shrank because only sequences of which the
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3270

3271 3272 3273 3274
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3275 3276 3277 3278

    Examples:
        .. code-block:: python

3279
            import paddle.fluid as fluid
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3307
    """
3308 3309 3310 3311
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3312 3313
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3314 3315 3316 3317
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3318
        self.zero_idx = None
3319 3320 3321
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3322
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3323 3324 3325 3326 3327
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3328
    def step_input(self, x, level=0):
3329
        r"""
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3373

Y
yuyang18 已提交
3374
        Args:
3375 3376 3377 3378 3379 3380 3381
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3382 3383

        Returns:
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3418
        """
3419
        self._assert_in_rnn_block_("step_input")
3420
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3421 3422 3423
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3424
                name=unique_name.generate('lod_rank_table'),
3425 3426
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3427 3428 3429 3430
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3431
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3432 3433
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3434
            self.max_seq_len.stop_gradient = False
3435 3436 3437
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3438
            self.cond.stop_gradient = True
3439 3440 3441 3442 3443 3444 3445
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3446 3447

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3448
            name=unique_name.generate('dynamic_rnn_input_array'),
3449 3450 3451
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3452 3453 3454 3455 3456 3457
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3458
        return array_read(array=input_array, i=self.step_idx)
3459

Y
yangyaming 已提交
3460
    def static_input(self, x):
3461
        r"""
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3535

Y
yuyang18 已提交
3536
        Args:
3537 3538 3539 3540
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3541 3542

        Returns:
T
tianshuo78520a 已提交
3543
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3555 3556 3557 3558

        Examples:
            .. code-block:: python

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3585
        """
Y
yangyaming 已提交
3586
        self._assert_in_rnn_block_("static_input")
3587
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3588 3589 3590 3591 3592
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3593
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3594 3595
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3596 3597 3598 3599 3600 3601
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3602 3603
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3604
    @signature_safe_contextmanager
3605
    def block(self):
Y
yuyang18 已提交
3606
        """
3607 3608 3609 3610 3611 3612
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3613
        """
3614 3615
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3616 3617 3618 3619
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3620 3621 3622 3623
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3624
            increment(x=self.step_idx, value=1.0, in_place=True)
3625 3626

            for new_mem, mem_array in self.mem_link:
3627 3628
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3629 3630 3631 3632
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3633 3634 3635 3636

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3637
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3638 3639

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3640
        """
T
tianshuo78520a 已提交
3641
        This function is used to get the output  sequences of DynamicRNN.
3642 3643 3644 3645 3646 3647 3648 3649 3650

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3651
        """
3652
        if self.status != DynamicRNN.AFTER_RNN:
3653 3654
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3655 3656 3657 3658 3659
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3660 3661 3662 3663 3664 3665
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3666
        r"""
3667 3668 3669
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3670

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3683
            value (float, optional): When init is None, it is used as initialized value
3684 3685
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3686
                the memory needs to reorder like the RNN's input sequences. It should be
3687 3688 3689 3690 3691 3692 3693
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3694
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3695
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3696
                the memory Tensor also need to be shrank and will only retain data \
3697 3698 3699 3700 3701 3702
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3703

3704 3705 3706
        Examples:
            .. code-block:: python

3707
                import paddle.fluid as fluid
3708

3709 3710
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3711

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3723

3724 3725
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3726 3727


3728 3729
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3730

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3750
        """
3751
        self._assert_in_rnn_block_('memory')
3752
        self._init_zero_idx_()
3753 3754 3755
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3756
        if init is not None:
3757 3758
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3759
            parent_block = self._parent_block_()
3760 3761 3762 3763 3764 3765 3766 3767
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3768
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3769 3770
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3771 3772 3773 3774 3775 3776
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3777
                init_tensor = init_reordered
3778
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3779
                name=unique_name.generate('dynamic_rnn_mem_array'),
3780 3781
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3782 3783 3784 3785 3786 3787
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3788
            retv = array_read(array=mem_array, i=self.step_idx)
3789 3790 3791
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3792 3793 3794 3795 3796 3797 3798 3799 3800
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3801
                name=unique_name.generate('mem_init'), dtype=dtype)
3802
            arr, dtype = self.input_array[0]
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3819 3820 3821
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3822
        """
3823 3824
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3825
        Args:
3826 3827 3828
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3829 3830 3831

        Returns:
            None
3832

3833 3834 3835 3836 3837
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3838
        """
3839
        self._assert_in_rnn_block_('update_memory')
3840 3841 3842 3843
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3854
        """
3855
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3856 3857

        Args:
3858 3859
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3860 3861 3862

        Returns:
            None
3863 3864 3865

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3866
        """
3867 3868 3869
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3870 3871
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3872
            outside_array = parent_block.create_var(
3873
                name=unique_name.generate_with_ignorable_key("_".join(
3874 3875 3876 3877 3878 3879
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3880 3881 3882 3883 3884
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3885 3886 3887 3888 3889 3890 3891 3892 3893
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3894

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3905 3906
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3907 3908


L
liym27 已提交
3909 3910
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3911 3912
    :api_attr: Static Graph

L
liym27 已提交
3913 3914 3915
    This operator is like a C++ switch/case statement.

    Args:
3916
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3917 3918 3919 3920 3921
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3922
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3923 3924 3925 3926
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3927
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3939 3940 3941
            import paddle

            paddle.enable_static()
3942

L
liym27 已提交
3943
            def fn_1():
3944
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3945 3946

            def fn_2():
3947
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3948 3949

            def fn_3():
3950
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3951

3952 3953 3954
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3955 3956
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3957

3958
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3959 3960 3961 3962
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3963
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3964 3965 3966 3967 3968
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3969
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3970 3971 3972
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3973
                exe = paddle.static.Executor(paddle.CPUPlace())
3974
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3975 3976 3977 3978 3979 3980 3981 3982
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3983 3984
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3985 3986 3987 3988

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3989
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
4002
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
4015
                                   "switch_case", int, type(key)))
L
liym27 已提交
4016 4017 4018

            if key in keys_of_fns:
                raise ValueError(
4019 4020
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
4021 4022 4023 4024 4025
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4026 4027 4028
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4053
@templatedoc()
Y
Yang Yu 已提交
4054
def reorder_lod_tensor_by_rank(x, rank_table):
4055 4056 4057 4058
    """
    ${comment}

    Args:
4059 4060
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4061

4062
    Returns:
4063
        out(${out_type}): ${out_comment}.
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4077 4078 4079 4080 4081 4082 4083

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4084 4085
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4086
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4087 4088 4089 4090 4091 4092
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
4093
    return out
4094 4095


4096
def is_empty(x, name=None):
4097
    """
4098

4099
    Test whether a Tensor is empty.
4100 4101

    Args:
4102 4103 4104 4105
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4106 4107

    Returns:
4108
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4109 4110 4111 4112

    Examples:
        .. code-block:: python

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4124

4125
    """
H
hong 已提交
4126
    if in_dygraph_mode():
W
wanghuancoder 已提交
4127
        return _C_ops.is_empty(x)
4128 4129
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4130

4131 4132
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
4133 4134
    check_type(name, "name", (str, type(None)), "is_empty")

4135
    helper = LayerHelper("is_empty", **locals())
4136 4137
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4138 4139 4140
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
4141
    return cond