test_norm_all.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23 24


25
def p_norm(x, axis, porder, keepdims=False, reduce_all=False):
myq406450149's avatar
myq406450149 已提交
26
    r = []
27
    if axis is None or reduce_all:
myq406450149's avatar
myq406450149 已提交
28 29
        x = x.flatten()
        if porder == np.inf:
myq406450149's avatar
myq406450149 已提交
30
            r = np.amax(np.abs(x), keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
31
        elif porder == -np.inf:
myq406450149's avatar
myq406450149 已提交
32
            r = np.amin(np.abs(x), keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
33
        else:
myq406450149's avatar
myq406450149 已提交
34
            r = np.linalg.norm(x, ord=porder, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
35 36 37 38 39 40 41 42 43 44
    elif isinstance(axis, list or tuple) and len(axis) == 2:
        if porder == np.inf:
            axis = tuple(axis)
            r = np.amax(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == -np.inf:
            axis = tuple(axis)
            r = np.amin(np.abs(x), axis=axis, keepdims=keepdims)
        elif porder == 0:
            axis = tuple(axis)
            r = x.astype(bool)
myq406450149's avatar
myq406450149 已提交
45
            r = np.sum(r, axis, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
46 47
        elif porder == 1:
            axis = tuple(axis)
myq406450149's avatar
myq406450149 已提交
48
            r = np.sum(np.abs(x), axis, keepdims=keepdims)
myq406450149's avatar
myq406450149 已提交
49 50 51 52 53 54 55 56
        else:
            axis = tuple(axis)
            xp = np.power(np.abs(x), porder)
            s = np.sum(xp, axis=axis, keepdims=keepdims)
            r = np.power(s, 1.0 / porder)
    else:
        if isinstance(axis, list):
            axis = tuple(axis)
57 58
        r = np.linalg.norm(x, ord=porder, axis=axis, keepdims=keepdims)
    r = r.astype(x.dtype)
myq406450149's avatar
myq406450149 已提交
59

60 61 62 63 64
    return r


def frobenius_norm(x, axis=None, keepdims=False):
    if isinstance(axis, list): axis = tuple(axis)
myq406450149's avatar
myq406450149 已提交
65
    if axis is None: x = x.reshape(1, x.size)
66 67
    r = np.linalg.norm(
        x, ord='fro', axis=axis, keepdims=keepdims).astype(x.dtype)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    return r


class TestFrobeniusNormOp(OpTest):
    def setUp(self):
        self.op_type = "frobenius_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 1.0).astype(self.dtype)
        norm = frobenius_norm(x, self.axis, self.keepdim)
        self.reduce_all = (len(self.axis) == len(self.shape))
        self.inputs = {'X': x}
        self.attrs = {
            'dim': list(self.axis),
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }
        self.outputs = {'Out': norm}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = (1, 2)
        self.keepdim = False
        self.dtype = "float64"


class TestFrobeniusNormOp2(TestFrobeniusNormOp):
    def init_test_case(self):
        self.shape = [5, 5, 5]
        self.axis = (0, 1)
        self.keepdim = True
        self.dtype = "float32"

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestPnormOp(OpTest):
    def setUp(self):
        self.op_type = "p_norm"
        self.init_test_case()
        x = (np.random.random(self.shape) + 0.5).astype(self.dtype)
115
        norm = p_norm(x, self.axis, self.porder, self.keepdim, self.asvector)
116 117 118 119 120
        self.inputs = {'X': x}
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
121 122
            'porder': float(self.porder),
            'asvector': self.asvector
123 124
        }
        self.outputs = {'Out': norm}
125
        self.gradient = self.calc_gradient()
126 127 128 129 130 131 132 133 134 135 136 137 138 139

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = 1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = "float64"
140
        self.asvector = False
141

142 143 144 145 146
    def calc_gradient(self):
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
147 148
            'porder': float(self.porder),
            'asvector': self.asvector
149 150 151 152
        }
        x = self.inputs["X"]
        porder = self.attrs["porder"]
        axis = self.attrs["axis"]
153 154 155
        asvector = self.attrs["asvector"]
        x_dtype = x.dtype
        x = x.astype(np.float32) if x.dtype == np.float16 else x
156 157 158
        if porder == 0:
            grad = np.zeros(x.shape).astype(x.dtype)
        elif porder in [float("inf"), float("-inf")]:
159 160
            norm = p_norm(
                x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector)
161 162 163 164
            x_abs = np.abs(x)
            grad = np.sign(x)
            grad[x_abs != norm] = 0.0
        else:
165 166
            norm = p_norm(
                x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector)
167 168 169 170 171 172
            grad = np.power(norm, 1 - porder) * np.power(
                np.abs(x), porder - 1) * np.sign(x)

        numel = 1
        for s in x.shape:
            numel *= s
173 174 175
        divisor = numel if asvector else x.shape[axis]
        numel /= divisor
        return [grad.astype(x_dtype) * 1 / numel]
176

177 178 179 180 181 182 183 184 185

class TestPnormOp2(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = True
        self.dtype = "float32"
186
        self.asvector = False
187 188 189 190 191

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


192 193 194 195 196 197 198 199
class TestPnormOp3(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = np.inf
        self.keepdim = True
        self.dtype = "float32"
200
        self.asvector = False
201 202 203 204 205 206 207 208 209 210 211 212 213

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp4(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = -np.inf
        self.keepdim = True
        self.dtype = "float32"
214
        self.asvector = False
215 216 217 218 219 220 221 222 223 224 225 226 227

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


class TestPnormOp5(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = 2
        self.epsilon = 1e-12
        self.porder = 0
        self.keepdim = True
        self.dtype = "float32"
228
        self.asvector = False
229 230 231 232 233

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
class TestPnormOp6(TestPnormOp):
    def init_test_case(self):
        self.shape = [3, 20, 3]
        self.axis = -1
        self.epsilon = 1e-12
        self.porder = 2
        self.keepdim = False
        self.dtype = "float32"
        self.asvector = True

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestPnormOpFP16(TestPnormOp):
    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = 1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = "float16"
        self.asvector = False

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['X'], 'Out', user_defined_grads=self.gradient)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestPnormOpFP161(TestPnormOpFP16):
    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = -1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = "float16"
        self.asvector = True


285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestPnormBF16Op(OpTest):
    def setUp(self):
        self.op_type = "p_norm"
        self.init_test_case()
        self.x = (np.random.random(self.shape) + 0.5).astype(np.float32)
        self.norm = p_norm(self.x, self.axis, self.porder, self.keepdim,
                           self.asvector)
        self.gradient = self.calc_gradient()
        self.inputs = {'X': convert_float_to_uint16(self.x)}
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder),
            'asvector': self.asvector
        }
        self.outputs = {'Out': convert_float_to_uint16(self.norm)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(
            place, ['X'], 'Out', user_defined_grads=self.gradient)

    def init_test_case(self):
        self.shape = [2, 3, 4, 5]
        self.axis = 1
        self.epsilon = 1e-12
        self.porder = 2.0
        self.keepdim = False
        self.dtype = np.uint16
        self.asvector = False

    def calc_gradient(self):
        self.attrs = {
            'epsilon': self.epsilon,
            'axis': self.axis,
            'keepdim': self.keepdim,
            'porder': float(self.porder),
            'asvector': self.asvector
        }
        x = self.x
        porder = self.attrs["porder"]
        axis = self.attrs["axis"]
        asvector = self.attrs["asvector"]
        x_dtype = x.dtype
        x = x.astype(np.float32) if x.dtype == np.float16 else x
        if porder == 0:
            grad = np.zeros(x.shape).astype(x.dtype)
        elif porder in [float("inf"), float("-inf")]:
            norm = p_norm(
                x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector)
            x_abs = np.abs(x)
            grad = np.sign(x)
            grad[x_abs != norm] = 0.0
        else:
            norm = p_norm(
                x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector)
            grad = np.power(norm, 1 - porder) * np.power(
                np.abs(x), porder - 1) * np.sign(x)

        numel = 1
        for s in x.shape:
            numel *= s
        divisor = numel if asvector else x.shape[axis]
        numel /= divisor
        return [grad.astype(x_dtype) * 1 / numel]


myq406450149's avatar
myq406450149 已提交
359
def run_fro(self, p, axis, shape_x, dtype, keep_dim, check_dim=False):
360 361
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
362
        out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim)
363 364 365
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
myq406450149's avatar
myq406450149 已提交
366
        expected_result = frobenius_norm(np_input, axis=axis, keepdims=keep_dim)
367 368
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
    self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
myq406450149's avatar
myq406450149 已提交
369 370 371 372
    if keep_dim and check_dim:
        self.assertEqual(
            (np.abs(np.array(result.shape) - np.array(expected_result.shape)) <
             1e-6).all(), True)
373 374


myq406450149's avatar
myq406450149 已提交
375
def run_pnorm(self, p, axis, shape_x, dtype, keep_dim, check_dim=False):
376 377
    with fluid.program_guard(fluid.Program()):
        data = fluid.data(name="X", shape=shape_x, dtype=dtype)
myq406450149's avatar
myq406450149 已提交
378
        out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim)
379 380 381
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype)
myq406450149's avatar
myq406450149 已提交
382 383
        expected_result = p_norm(
            np_input, porder=p, axis=axis, keepdims=keep_dim).astype(dtype)
384
        result, = exe.run(feed={"X": np_input}, fetch_list=[out])
myq406450149's avatar
myq406450149 已提交
385 386 387 388 389
    self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True)
    if keep_dim and check_dim:
        self.assertEqual(
            (np.abs(np.array(result.shape) - np.array(expected_result.shape)) <
             1e-6).all(), True)
myq406450149's avatar
myq406450149 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403


def run_graph(self, p, axis, shape_x, dtype):
    paddle.disable_static()
    shape = [2, 3, 4]
    np_input = np.arange(24).astype('float32') - 12
    np_input = np_input.reshape(shape)
    x = paddle.to_tensor(np_input)
    #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
    # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]
    out_pnorm = paddle.norm(x, p=2, axis=-1)

    # compute frobenius norm along last two dimensions.
    out_fro = paddle.norm(x, p='fro')
myq406450149's avatar
myq406450149 已提交
404
    out_fro = paddle.norm(x, p='fro', axis=0)
myq406450149's avatar
myq406450149 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    out_fro = paddle.norm(x, p='fro', axis=[0, 1])
    # compute 2-order  norm along [0,1] dimension.
    out_pnorm = paddle.norm(x, p=2, axis=[0, 1])
    out_pnorm = paddle.norm(x, p=2)
    #out_pnorm = [17.43559577 16.91153453 16.73320053 16.91153453]
    # compute inf-order  norm
    out_pnorm = paddle.norm(x, p=np.inf)
    #out_pnorm = [12.]
    out_pnorm = paddle.norm(x, p=np.inf, axis=0)
    #out_pnorm = [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]

    # compute -inf-order  norm
    out_pnorm = paddle.norm(x, p=-np.inf)
    #out_pnorm = [0.]
    out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
    # out_fro = [17.43559577 16.91153453 16.73320053 16.91153453]
    paddle.enable_static()
422 423 424 425


class API_NormTest(unittest.TestCase):
    def test_basic(self):
myq406450149's avatar
myq406450149 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        keep_dims = {False, True}
        for keep in keep_dims:
            run_fro(
                self,
                p='fro',
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep)
            run_fro(
                self,
                p='fro',
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=None,
                shape_x=[3, 4],
                dtype="float32",
                keep_dim=keep)
            run_pnorm(
                self,
                p=2,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=0,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float32",
                keep_dim=keep)
            run_pnorm(
                self,
                p=-np.inf,
                axis=0,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=-np.inf,
                axis=None,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep)
            run_pnorm(
                self,
                p=0,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)

            run_pnorm(
                self,
                p=1,
                axis=1,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=0,
                axis=None,
                shape_x=[3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=2,
                axis=-1,
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=1,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=np.inf,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
            run_pnorm(
                self,
                p=-np.inf,
                axis=[0, 1],
                shape_x=[2, 3, 4],
                dtype="float64",
                keep_dim=keep,
                check_dim=True)
myq406450149's avatar
myq406450149 已提交
553 554 555 556

    def test_dygraph(self):
        run_graph(self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32")

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[10, 10], dtype="float32")
            y_1 = paddle.norm(x, p='fro', name='frobenius_name')
            y_2 = paddle.norm(x, p=2, name='pnorm_name')
            self.assertEqual(('frobenius_name' in y_1.name), True)
            self.assertEqual(('pnorm_name' in y_2.name), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):

            def err_dtype(p, shape_x, xdtype, out=None):
                data = fluid.data(shape=shape_x, dtype=xdtype)
                paddle.norm(data, p=p, out=out)

            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64")
myq406450149's avatar
myq406450149 已提交
573
            self.assertRaises(ValueError, paddle.norm, "inf", [2], "int64")
574 575 576 577 578 579 580 581 582 583
            out = fluid.data(name="out", shape=[1], dtype="int64")
            self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64",
                              out)
            self.assertRaises(TypeError, err_dtype, 2, [10], "int64")
            self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out)

            data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64")
            self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm")
            self.assertRaises(ValueError, paddle.norm, data, p=[1])
            self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1)
myq406450149's avatar
myq406450149 已提交
584
            self.assertRaises(ValueError, paddle.norm, 0, [1, 0], "float64")
585 586 587 588 589 590
            data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64")
            self.assertRaises(
                ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1])


if __name__ == '__main__':
H
hong 已提交
591
    paddle.enable_static()
592
    unittest.main()